add pipeline
Browse files- README.md +5 -2
- pipeline.py +24 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- feature-extraction
|
5 |
+
library_name: generic
|
6 |
+
---
|
pipeline.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import numpy as np
|
3 |
+
from transformers import CLIPTokenizer, CLIPModel
|
4 |
+
|
5 |
+
|
6 |
+
class PreTrainedPipeline():
|
7 |
+
def __init__(self, path=""):
|
8 |
+
# Preload all the elements you are going to need at inference.
|
9 |
+
# For instance your model, processors, tokenizer that might be needed.
|
10 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
11 |
+
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
12 |
+
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
+
|
14 |
+
def __call__(self, inputs: str) -> List[float]:
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
inputs (:obj:`str`):
|
18 |
+
a string to get the features from.
|
19 |
+
Return:
|
20 |
+
A :obj:`list` of floats: The features computed by the model.
|
21 |
+
"""
|
22 |
+
token_inputs = self.tokenizer([inputs], padding=True, return_tensors="pt")
|
23 |
+
query_embed = self.model.get_text_features(**token_inputs)
|
24 |
+
return query_embed.detach().cpu().numpy()[0].tolist()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.23.1
|
2 |
+
transformers==4.21.1
|
3 |
+
torch==1.12.1
|
4 |
+
torchvision==0.13.1
|
5 |
+
-f https://download.pytorch.org/whl/cu116
|