--- license: mit language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: token-classification ---

MedSSS-8B-PRM

GitHub | Paper
# Introduction **MedSSS-PRM** is a the PRM model designed for slow-thinking medical reasoning. It will assign a `[0-1]` float value for every internal reasoning step of **MedSSS-Policy**. For more information, visit our GitHub repository: [https://github.com/pixas/MedSSS](https://github.com/pixas/MedSSS). # Usage We build the PRM model as a LoRA adapter, which saves the memory to use it. As this LoRA adapter is built on `Meta-Llama3.1-8B-Instruct`, you need to first prepare the base model in your platform. ```python def obtain_prm_value_for_single_pair(tokenizer, value_model, inputs, outputs): # `outputs` generated by the MedSSS-Policy response = outputs completions = [f"Step" + completion if not completion.startswith("Step") else completion for k, completion in enumerate(outputs.split("\n\nStep"))] messages = [ {"role": "user", "content": inputs}, {"role": "assistant", "content": response} ] input_text = tokenizer.apply_chat_template(messages, tokenize=False) response_begin_index = input_text.index(response) pre_response_input = input_text[:response_begin_index] after_response_input = input_text[response_begin_index + len(response):] completion_ids = [ tokenizer(completion + "\n\n", add_special_tokens=False)['input_ids'] for completion in completions ] response_id = list(chain(*completion_ids)) pre_response_id = tokenizer(pre_response_input, add_special_tokens=False)['input_ids'] after_response_id = tokenizer(after_response_input, add_special_tokens=False)['input_ids'] input_ids = pre_response_id + response_id + after_response_id value = value_model(input_ids=torch.tensor(input_ids).unsqueeze(0).to(value_model.device)) # [1, N] completion_index = [] for i, completion in enumerate(completion_ids): if i == 0: completion_index.append(len(completion) + len(pre_response_id) - 1) else: completion_index.append(completion_index[-1] + len(completion)) step_value = value[0, completion_index].cpu().numpy().tolist() return step_value from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel base_model = AutoModelForTokenClassification.from_pretrained("meta-llama/Llama-3.1-8B-Instruct",torch_dtype="auto",device_map="auto") model = PeftModel.from_pretrained(base_model, "pixas/MedSSS_PRM", torc_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("pixas/MedSSS_PRM") steps input_text = "How to stop a cough?" step_wise_generation = "Step 0: Let's break down this problem step by step.\n\nStep 1: First [omitted]" value = obtain_prm_value_for_single_pair(tokenizer, model, input_text, step_wise_generation) print(value) ``` MedSSS-PRM uses "\n\nStep" to separate intermediate steps. So the token classification happens before the next "Step k: " or the end of the sequence.