File size: 1,884 Bytes
a3f898b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0910
- Accuracy: 0.9714

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2166        | 0.13  | 38   | 1.9844          | 0.2429   |
| 1.1745        | 1.13  | 76   | 1.1520          | 0.5286   |
| 0.5065        | 2.13  | 114  | 0.6031          | 0.7857   |
| 0.2866        | 3.13  | 152  | 0.4902          | 0.7429   |
| 0.1438        | 4.13  | 190  | 0.3535          | 0.8429   |
| 0.0647        | 5.13  | 228  | 0.1642          | 0.9429   |
| 0.0417        | 6.13  | 266  | 0.0806          | 0.9857   |
| 0.0442        | 7.11  | 300  | 0.0910          | 0.9714   |


### Framework versions

- Transformers 4.33.1
- Pytorch 1.12.1+cu116
- Datasets 2.14.5
- Tokenizers 0.13.3