Upload 6 files
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +538 -0
- weights.txt +0 -0
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ce184125031081cef1c7b103a2731875c894080ae0b604bc5b781e87a7a62d0
|
3 |
+
size 442756141
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 12:56:18 4 0.0000 3.8419383407730647 3.509683847427368 0.3053 0.3053 0.3053 0.3053
|
3 |
+
2 12:59:20 4 0.0000 3.2227634368718494 2.775869846343994 0.6141 0.6141 0.6141 0.6141
|
4 |
+
3 13:02:23 4 0.0000 2.7700508728423903 2.410931348800659 0.819 0.819 0.819 0.819
|
5 |
+
4 13:05:27 4 0.0000 2.5123233380738026 2.1908302307128906 0.8605 0.8605 0.8605 0.8605
|
6 |
+
5 13:08:30 4 0.0000 2.350920672660358 2.0516607761383057 0.8737 0.8737 0.8737 0.8737
|
7 |
+
6 13:11:34 4 0.0000 2.2365647102395845 1.9612011909484863 0.884 0.884 0.884 0.884
|
8 |
+
7 13:14:37 4 0.0000 2.1661910551931784 1.8981177806854248 0.9008 0.9008 0.9008 0.9008
|
9 |
+
8 13:17:39 4 0.0000 2.1112017686144187 1.8548760414123535 0.9117 0.9117 0.9117 0.9117
|
10 |
+
9 13:20:43 4 0.0000 2.0759186003590093 1.830302357673645 0.9161 0.9161 0.9161 0.9161
|
11 |
+
10 13:23:46 4 0.0000 2.0624352113596314 1.8217284679412842 0.9195 0.9195 0.9195 0.9195
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-02-04 12:53:17,467 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-02-04 12:53:17,468 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): CamembertModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32005, 768, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
41 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
64 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
65 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
87 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
88 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
110 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
111 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
133 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
134 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
(6): RobertaLayer(
|
153 |
+
(attention): RobertaAttention(
|
154 |
+
(self): RobertaSelfAttention(
|
155 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
156 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
157 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
159 |
+
)
|
160 |
+
(output): RobertaSelfOutput(
|
161 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(intermediate): RobertaIntermediate(
|
167 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
168 |
+
)
|
169 |
+
(output): RobertaOutput(
|
170 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
171 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(7): RobertaLayer(
|
176 |
+
(attention): RobertaAttention(
|
177 |
+
(self): RobertaSelfAttention(
|
178 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
179 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
180 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(output): RobertaSelfOutput(
|
184 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
185 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(intermediate): RobertaIntermediate(
|
190 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
191 |
+
)
|
192 |
+
(output): RobertaOutput(
|
193 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
194 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(8): RobertaLayer(
|
199 |
+
(attention): RobertaAttention(
|
200 |
+
(self): RobertaSelfAttention(
|
201 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
202 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
203 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
(output): RobertaSelfOutput(
|
207 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
208 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(intermediate): RobertaIntermediate(
|
213 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
214 |
+
)
|
215 |
+
(output): RobertaOutput(
|
216 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(9): RobertaLayer(
|
222 |
+
(attention): RobertaAttention(
|
223 |
+
(self): RobertaSelfAttention(
|
224 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
225 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
226 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): RobertaSelfOutput(
|
230 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): RobertaIntermediate(
|
236 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
237 |
+
)
|
238 |
+
(output): RobertaOutput(
|
239 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(10): RobertaLayer(
|
245 |
+
(attention): RobertaAttention(
|
246 |
+
(self): RobertaSelfAttention(
|
247 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
248 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
249 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
(output): RobertaSelfOutput(
|
253 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
254 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(intermediate): RobertaIntermediate(
|
259 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
260 |
+
)
|
261 |
+
(output): RobertaOutput(
|
262 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
263 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(11): RobertaLayer(
|
268 |
+
(attention): RobertaAttention(
|
269 |
+
(self): RobertaSelfAttention(
|
270 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
271 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
272 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
274 |
+
)
|
275 |
+
(output): RobertaSelfOutput(
|
276 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
277 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
(intermediate): RobertaIntermediate(
|
282 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
283 |
+
)
|
284 |
+
(output): RobertaOutput(
|
285 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
286 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(pooler): RobertaPooler(
|
293 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
294 |
+
(activation): Tanh()
|
295 |
+
)
|
296 |
+
)
|
297 |
+
)
|
298 |
+
(word_dropout): WordDropout(p=0.05)
|
299 |
+
(locked_dropout): LockedDropout(p=0.5)
|
300 |
+
(linear): Linear(in_features=768, out_features=51, bias=True)
|
301 |
+
(beta): 1.0
|
302 |
+
(weights): None
|
303 |
+
(weight_tensor) None
|
304 |
+
)"
|
305 |
+
2022-02-04 12:53:17,506 ----------------------------------------------------------------------------------------------------
|
306 |
+
2022-02-04 12:53:17,506 Corpus: "Corpus: 5642 train + 195 dev + 649 test sentences"
|
307 |
+
2022-02-04 12:53:17,506 ----------------------------------------------------------------------------------------------------
|
308 |
+
2022-02-04 12:53:17,506 Parameters:
|
309 |
+
2022-02-04 12:53:17,506 - learning_rate: "5e-06"
|
310 |
+
2022-02-04 12:53:17,506 - mini_batch_size: "32"
|
311 |
+
2022-02-04 12:53:17,506 - patience: "3"
|
312 |
+
2022-02-04 12:53:17,506 - anneal_factor: "0.5"
|
313 |
+
2022-02-04 12:53:17,506 - max_epochs: "10"
|
314 |
+
2022-02-04 12:53:17,506 - shuffle: "True"
|
315 |
+
2022-02-04 12:53:17,506 - train_with_dev: "False"
|
316 |
+
2022-02-04 12:53:17,506 - batch_growth_annealing: "False"
|
317 |
+
2022-02-04 12:53:17,506 ----------------------------------------------------------------------------------------------------
|
318 |
+
2022-02-04 12:53:17,506 Model training base path: "resources/taggers/pos-camembert"
|
319 |
+
2022-02-04 12:53:17,506 ----------------------------------------------------------------------------------------------------
|
320 |
+
2022-02-04 12:53:17,511 Device: cuda:0
|
321 |
+
2022-02-04 12:53:17,511 ----------------------------------------------------------------------------------------------------
|
322 |
+
2022-02-04 12:53:17,511 Embeddings storage mode: none
|
323 |
+
2022-02-04 12:53:17,513 ----------------------------------------------------------------------------------------------------
|
324 |
+
2022-02-04 12:53:38,315 epoch 1 - iter 17/177 - loss 3.96872255 - samples/sec: 26.15 - lr: 0.000000
|
325 |
+
2022-02-04 12:53:54,561 epoch 1 - iter 34/177 - loss 3.96629180 - samples/sec: 33.49 - lr: 0.000001
|
326 |
+
2022-02-04 12:54:11,140 epoch 1 - iter 51/177 - loss 3.95985736 - samples/sec: 32.82 - lr: 0.000001
|
327 |
+
2022-02-04 12:54:27,471 epoch 1 - iter 68/177 - loss 3.95248851 - samples/sec: 33.31 - lr: 0.000002
|
328 |
+
2022-02-04 12:54:44,574 epoch 1 - iter 85/177 - loss 3.94223845 - samples/sec: 31.81 - lr: 0.000002
|
329 |
+
2022-02-04 12:54:59,811 epoch 1 - iter 102/177 - loss 3.93034373 - samples/sec: 35.71 - lr: 0.000003
|
330 |
+
2022-02-04 12:55:17,140 epoch 1 - iter 119/177 - loss 3.91667895 - samples/sec: 31.39 - lr: 0.000003
|
331 |
+
2022-02-04 12:55:33,245 epoch 1 - iter 136/177 - loss 3.90088222 - samples/sec: 33.78 - lr: 0.000004
|
332 |
+
2022-02-04 12:55:48,743 epoch 1 - iter 153/177 - loss 3.87766994 - samples/sec: 35.11 - lr: 0.000004
|
333 |
+
2022-02-04 12:56:06,269 epoch 1 - iter 170/177 - loss 3.84880099 - samples/sec: 31.04 - lr: 0.000005
|
334 |
+
2022-02-04 12:56:12,033 ----------------------------------------------------------------------------------------------------
|
335 |
+
2022-02-04 12:56:12,033 EPOCH 1 done: loss 3.8419 - lr 0.0000050
|
336 |
+
2022-02-04 12:56:18,260 DEV : loss 3.509683847427368 - f1-score (micro avg) 0.3053
|
337 |
+
2022-02-04 12:56:18,262 BAD EPOCHS (no improvement): 4
|
338 |
+
2022-02-04 12:56:18,285 ----------------------------------------------------------------------------------------------------
|
339 |
+
2022-02-04 12:56:35,575 epoch 2 - iter 17/177 - loss 3.54034313 - samples/sec: 31.47 - lr: 0.000005
|
340 |
+
2022-02-04 12:56:52,475 epoch 2 - iter 34/177 - loss 3.50300407 - samples/sec: 32.19 - lr: 0.000005
|
341 |
+
2022-02-04 12:57:09,058 epoch 2 - iter 51/177 - loss 3.46864739 - samples/sec: 32.81 - lr: 0.000005
|
342 |
+
2022-02-04 12:57:25,624 epoch 2 - iter 68/177 - loss 3.43125430 - samples/sec: 32.84 - lr: 0.000005
|
343 |
+
2022-02-04 12:57:42,941 epoch 2 - iter 85/177 - loss 3.39270879 - samples/sec: 31.42 - lr: 0.000005
|
344 |
+
2022-02-04 12:57:59,153 epoch 2 - iter 102/177 - loss 3.35791389 - samples/sec: 33.56 - lr: 0.000005
|
345 |
+
2022-02-04 12:58:16,864 epoch 2 - iter 119/177 - loss 3.32573531 - samples/sec: 30.72 - lr: 0.000005
|
346 |
+
2022-02-04 12:58:34,354 epoch 2 - iter 136/177 - loss 3.29370429 - samples/sec: 31.11 - lr: 0.000005
|
347 |
+
2022-02-04 12:58:51,116 epoch 2 - iter 153/177 - loss 3.26367901 - samples/sec: 32.46 - lr: 0.000005
|
348 |
+
2022-02-04 12:59:08,117 epoch 2 - iter 170/177 - loss 3.23382669 - samples/sec: 32.00 - lr: 0.000004
|
349 |
+
2022-02-04 12:59:15,072 ----------------------------------------------------------------------------------------------------
|
350 |
+
2022-02-04 12:59:15,074 EPOCH 2 done: loss 3.2228 - lr 0.0000044
|
351 |
+
2022-02-04 12:59:20,452 DEV : loss 2.775869846343994 - f1-score (micro avg) 0.6141
|
352 |
+
2022-02-04 12:59:20,455 BAD EPOCHS (no improvement): 4
|
353 |
+
2022-02-04 12:59:20,455 ----------------------------------------------------------------------------------------------------
|
354 |
+
2022-02-04 12:59:38,069 epoch 3 - iter 17/177 - loss 2.92343717 - samples/sec: 30.89 - lr: 0.000004
|
355 |
+
2022-02-04 12:59:54,400 epoch 3 - iter 34/177 - loss 2.90201388 - samples/sec: 33.32 - lr: 0.000004
|
356 |
+
2022-02-04 13:00:12,150 epoch 3 - iter 51/177 - loss 2.88495451 - samples/sec: 30.65 - lr: 0.000004
|
357 |
+
2022-02-04 13:00:28,960 epoch 3 - iter 68/177 - loss 2.86475060 - samples/sec: 32.37 - lr: 0.000004
|
358 |
+
2022-02-04 13:00:47,016 epoch 3 - iter 85/177 - loss 2.84779479 - samples/sec: 30.13 - lr: 0.000004
|
359 |
+
2022-02-04 13:01:03,811 epoch 3 - iter 102/177 - loss 2.83018073 - samples/sec: 32.40 - lr: 0.000004
|
360 |
+
2022-02-04 13:01:19,598 epoch 3 - iter 119/177 - loss 2.81577196 - samples/sec: 34.47 - lr: 0.000004
|
361 |
+
2022-02-04 13:01:36,746 epoch 3 - iter 136/177 - loss 2.80310518 - samples/sec: 31.73 - lr: 0.000004
|
362 |
+
2022-02-04 13:01:53,532 epoch 3 - iter 153/177 - loss 2.79075673 - samples/sec: 32.41 - lr: 0.000004
|
363 |
+
2022-02-04 13:02:11,809 epoch 3 - iter 170/177 - loss 2.77624103 - samples/sec: 29.77 - lr: 0.000004
|
364 |
+
2022-02-04 13:02:17,990 ----------------------------------------------------------------------------------------------------
|
365 |
+
2022-02-04 13:02:17,991 EPOCH 3 done: loss 2.7701 - lr 0.0000039
|
366 |
+
2022-02-04 13:02:23,777 DEV : loss 2.410931348800659 - f1-score (micro avg) 0.819
|
367 |
+
2022-02-04 13:02:23,780 BAD EPOCHS (no improvement): 4
|
368 |
+
2022-02-04 13:02:23,781 ----------------------------------------------------------------------------------------------------
|
369 |
+
2022-02-04 13:02:41,231 epoch 4 - iter 17/177 - loss 2.60188784 - samples/sec: 31.18 - lr: 0.000004
|
370 |
+
2022-02-04 13:02:58,635 epoch 4 - iter 34/177 - loss 2.59095213 - samples/sec: 31.26 - lr: 0.000004
|
371 |
+
2022-02-04 13:03:15,040 epoch 4 - iter 51/177 - loss 2.58502577 - samples/sec: 33.17 - lr: 0.000004
|
372 |
+
2022-02-04 13:03:32,700 epoch 4 - iter 68/177 - loss 2.57149732 - samples/sec: 30.81 - lr: 0.000004
|
373 |
+
2022-02-04 13:03:49,889 epoch 4 - iter 85/177 - loss 2.55924475 - samples/sec: 31.65 - lr: 0.000004
|
374 |
+
2022-02-04 13:04:07,257 epoch 4 - iter 102/177 - loss 2.54972860 - samples/sec: 31.33 - lr: 0.000004
|
375 |
+
2022-02-04 13:04:24,141 epoch 4 - iter 119/177 - loss 2.54070048 - samples/sec: 32.23 - lr: 0.000004
|
376 |
+
2022-02-04 13:04:40,320 epoch 4 - iter 136/177 - loss 2.53210863 - samples/sec: 33.69 - lr: 0.000003
|
377 |
+
2022-02-04 13:04:57,281 epoch 4 - iter 153/177 - loss 2.52441237 - samples/sec: 32.08 - lr: 0.000003
|
378 |
+
2022-02-04 13:05:15,246 epoch 4 - iter 170/177 - loss 2.51520228 - samples/sec: 30.29 - lr: 0.000003
|
379 |
+
2022-02-04 13:05:21,452 ----------------------------------------------------------------------------------------------------
|
380 |
+
2022-02-04 13:05:21,458 EPOCH 4 done: loss 2.5123 - lr 0.0000033
|
381 |
+
2022-02-04 13:05:27,295 DEV : loss 2.1908302307128906 - f1-score (micro avg) 0.8605
|
382 |
+
2022-02-04 13:05:27,310 BAD EPOCHS (no improvement): 4
|
383 |
+
2022-02-04 13:05:27,310 ----------------------------------------------------------------------------------------------------
|
384 |
+
2022-02-04 13:05:44,024 epoch 5 - iter 17/177 - loss 2.39887737 - samples/sec: 32.55 - lr: 0.000003
|
385 |
+
2022-02-04 13:06:01,687 epoch 5 - iter 34/177 - loss 2.39948538 - samples/sec: 30.80 - lr: 0.000003
|
386 |
+
2022-02-04 13:06:19,664 epoch 5 - iter 51/177 - loss 2.40078878 - samples/sec: 30.29 - lr: 0.000003
|
387 |
+
2022-02-04 13:06:36,241 epoch 5 - iter 68/177 - loss 2.39524823 - samples/sec: 32.93 - lr: 0.000003
|
388 |
+
2022-02-04 13:06:52,683 epoch 5 - iter 85/177 - loss 2.38764769 - samples/sec: 33.17 - lr: 0.000003
|
389 |
+
2022-02-04 13:07:09,718 epoch 5 - iter 102/177 - loss 2.38104055 - samples/sec: 31.94 - lr: 0.000003
|
390 |
+
2022-02-04 13:07:26,578 epoch 5 - iter 119/177 - loss 2.37384530 - samples/sec: 32.29 - lr: 0.000003
|
391 |
+
2022-02-04 13:07:42,599 epoch 5 - iter 136/177 - loss 2.36823710 - samples/sec: 33.96 - lr: 0.000003
|
392 |
+
2022-02-04 13:08:00,031 epoch 5 - iter 153/177 - loss 2.36030726 - samples/sec: 31.25 - lr: 0.000003
|
393 |
+
2022-02-04 13:08:17,779 epoch 5 - iter 170/177 - loss 2.35368343 - samples/sec: 30.72 - lr: 0.000003
|
394 |
+
2022-02-04 13:08:24,110 ----------------------------------------------------------------------------------------------------
|
395 |
+
2022-02-04 13:08:24,111 EPOCH 5 done: loss 2.3509 - lr 0.0000028
|
396 |
+
2022-02-04 13:08:30,298 DEV : loss 2.0516607761383057 - f1-score (micro avg) 0.8737
|
397 |
+
2022-02-04 13:08:30,301 BAD EPOCHS (no improvement): 4
|
398 |
+
2022-02-04 13:08:30,301 ----------------------------------------------------------------------------------------------------
|
399 |
+
2022-02-04 13:08:46,667 epoch 6 - iter 17/177 - loss 2.27743160 - samples/sec: 33.25 - lr: 0.000003
|
400 |
+
2022-02-04 13:09:04,814 epoch 6 - iter 34/177 - loss 2.27286852 - samples/sec: 29.99 - lr: 0.000003
|
401 |
+
2022-02-04 13:09:21,239 epoch 6 - iter 51/177 - loss 2.27175336 - samples/sec: 33.23 - lr: 0.000003
|
402 |
+
2022-02-04 13:09:38,163 epoch 6 - iter 68/177 - loss 2.26491131 - samples/sec: 32.15 - lr: 0.000003
|
403 |
+
2022-02-04 13:09:54,338 epoch 6 - iter 85/177 - loss 2.25999023 - samples/sec: 33.65 - lr: 0.000003
|
404 |
+
2022-02-04 13:10:12,270 epoch 6 - iter 102/177 - loss 2.25580949 - samples/sec: 30.38 - lr: 0.000002
|
405 |
+
2022-02-04 13:10:29,245 epoch 6 - iter 119/177 - loss 2.25275307 - samples/sec: 32.13 - lr: 0.000002
|
406 |
+
2022-02-04 13:10:46,065 epoch 6 - iter 136/177 - loss 2.24661845 - samples/sec: 32.40 - lr: 0.000002
|
407 |
+
2022-02-04 13:11:03,357 epoch 6 - iter 153/177 - loss 2.24241040 - samples/sec: 31.47 - lr: 0.000002
|
408 |
+
2022-02-04 13:11:22,211 epoch 6 - iter 170/177 - loss 2.23773462 - samples/sec: 28.87 - lr: 0.000002
|
409 |
+
2022-02-04 13:11:28,309 ----------------------------------------------------------------------------------------------------
|
410 |
+
2022-02-04 13:11:28,321 EPOCH 6 done: loss 2.2366 - lr 0.0000022
|
411 |
+
2022-02-04 13:11:34,136 DEV : loss 1.9612011909484863 - f1-score (micro avg) 0.884
|
412 |
+
2022-02-04 13:11:34,150 BAD EPOCHS (no improvement): 4
|
413 |
+
2022-02-04 13:11:34,151 ----------------------------------------------------------------------------------------------------
|
414 |
+
2022-02-04 13:11:50,446 epoch 7 - iter 17/177 - loss 2.19566504 - samples/sec: 33.39 - lr: 0.000002
|
415 |
+
2022-02-04 13:12:06,851 epoch 7 - iter 34/177 - loss 2.19802945 - samples/sec: 33.21 - lr: 0.000002
|
416 |
+
2022-02-04 13:12:23,401 epoch 7 - iter 51/177 - loss 2.19405535 - samples/sec: 32.88 - lr: 0.000002
|
417 |
+
2022-02-04 13:12:41,303 epoch 7 - iter 68/177 - loss 2.19162087 - samples/sec: 30.39 - lr: 0.000002
|
418 |
+
2022-02-04 13:12:58,144 epoch 7 - iter 85/177 - loss 2.18471516 - samples/sec: 32.35 - lr: 0.000002
|
419 |
+
2022-02-04 13:13:16,467 epoch 7 - iter 102/177 - loss 2.18080579 - samples/sec: 29.75 - lr: 0.000002
|
420 |
+
2022-02-04 13:13:34,031 epoch 7 - iter 119/177 - loss 2.17936921 - samples/sec: 31.00 - lr: 0.000002
|
421 |
+
2022-02-04 13:13:51,077 epoch 7 - iter 136/177 - loss 2.17514038 - samples/sec: 32.02 - lr: 0.000002
|
422 |
+
2022-02-04 13:14:07,857 epoch 7 - iter 153/177 - loss 2.17141812 - samples/sec: 32.48 - lr: 0.000002
|
423 |
+
2022-02-04 13:14:25,422 epoch 7 - iter 170/177 - loss 2.16711471 - samples/sec: 30.99 - lr: 0.000002
|
424 |
+
2022-02-04 13:14:31,227 ----------------------------------------------------------------------------------------------------
|
425 |
+
2022-02-04 13:14:31,228 EPOCH 7 done: loss 2.1662 - lr 0.0000017
|
426 |
+
2022-02-04 13:14:37,035 DEV : loss 1.8981177806854248 - f1-score (micro avg) 0.9008
|
427 |
+
2022-02-04 13:14:37,049 BAD EPOCHS (no improvement): 4
|
428 |
+
2022-02-04 13:14:37,050 ----------------------------------------------------------------------------------------------------
|
429 |
+
2022-02-04 13:14:54,867 epoch 8 - iter 17/177 - loss 2.13839948 - samples/sec: 30.54 - lr: 0.000002
|
430 |
+
2022-02-04 13:15:11,283 epoch 8 - iter 34/177 - loss 2.13301605 - samples/sec: 33.16 - lr: 0.000002
|
431 |
+
2022-02-04 13:15:28,761 epoch 8 - iter 51/177 - loss 2.12335776 - samples/sec: 31.15 - lr: 0.000002
|
432 |
+
2022-02-04 13:15:44,480 epoch 8 - iter 68/177 - loss 2.12525500 - samples/sec: 34.61 - lr: 0.000001
|
433 |
+
2022-02-04 13:16:01,084 epoch 8 - iter 85/177 - loss 2.12100353 - samples/sec: 32.77 - lr: 0.000001
|
434 |
+
2022-02-04 13:16:17,945 epoch 8 - iter 102/177 - loss 2.12081652 - samples/sec: 32.27 - lr: 0.000001
|
435 |
+
2022-02-04 13:16:34,469 epoch 8 - iter 119/177 - loss 2.11872473 - samples/sec: 32.93 - lr: 0.000001
|
436 |
+
2022-02-04 13:16:50,308 epoch 8 - iter 136/177 - loss 2.11635062 - samples/sec: 34.35 - lr: 0.000001
|
437 |
+
2022-02-04 13:17:07,313 epoch 8 - iter 153/177 - loss 2.11371370 - samples/sec: 32.00 - lr: 0.000001
|
438 |
+
2022-02-04 13:17:25,553 epoch 8 - iter 170/177 - loss 2.11100152 - samples/sec: 29.83 - lr: 0.000001
|
439 |
+
2022-02-04 13:17:33,472 ----------------------------------------------------------------------------------------------------
|
440 |
+
2022-02-04 13:17:33,473 EPOCH 8 done: loss 2.1112 - lr 0.0000011
|
441 |
+
2022-02-04 13:17:39,308 DEV : loss 1.8548760414123535 - f1-score (micro avg) 0.9117
|
442 |
+
2022-02-04 13:17:39,311 BAD EPOCHS (no improvement): 4
|
443 |
+
2022-02-04 13:17:39,311 ----------------------------------------------------------------------------------------------------
|
444 |
+
2022-02-04 13:17:56,622 epoch 9 - iter 17/177 - loss 2.06819398 - samples/sec: 31.43 - lr: 0.000001
|
445 |
+
2022-02-04 13:18:13,360 epoch 9 - iter 34/177 - loss 2.07590305 - samples/sec: 32.51 - lr: 0.000001
|
446 |
+
2022-02-04 13:18:31,366 epoch 9 - iter 51/177 - loss 2.07666788 - samples/sec: 30.22 - lr: 0.000001
|
447 |
+
2022-02-04 13:18:49,983 epoch 9 - iter 68/177 - loss 2.07961625 - samples/sec: 29.23 - lr: 0.000001
|
448 |
+
2022-02-04 13:19:06,239 epoch 9 - iter 85/177 - loss 2.08063462 - samples/sec: 33.47 - lr: 0.000001
|
449 |
+
2022-02-04 13:19:23,068 epoch 9 - iter 102/177 - loss 2.08002246 - samples/sec: 32.33 - lr: 0.000001
|
450 |
+
2022-02-04 13:19:40,188 epoch 9 - iter 119/177 - loss 2.07956869 - samples/sec: 31.78 - lr: 0.000001
|
451 |
+
2022-02-04 13:19:57,482 epoch 9 - iter 136/177 - loss 2.07835867 - samples/sec: 31.47 - lr: 0.000001
|
452 |
+
2022-02-04 13:20:14,155 epoch 9 - iter 153/177 - loss 2.07750905 - samples/sec: 32.64 - lr: 0.000001
|
453 |
+
2022-02-04 13:20:31,533 epoch 9 - iter 170/177 - loss 2.07545212 - samples/sec: 31.31 - lr: 0.000001
|
454 |
+
2022-02-04 13:20:37,466 ----------------------------------------------------------------------------------------------------
|
455 |
+
2022-02-04 13:20:37,468 EPOCH 9 done: loss 2.0759 - lr 0.0000006
|
456 |
+
2022-02-04 13:20:43,299 DEV : loss 1.830302357673645 - f1-score (micro avg) 0.9161
|
457 |
+
2022-02-04 13:20:43,314 BAD EPOCHS (no improvement): 4
|
458 |
+
2022-02-04 13:20:43,314 ----------------------------------------------------------------------------------------------------
|
459 |
+
2022-02-04 13:21:00,247 epoch 10 - iter 17/177 - loss 2.06625894 - samples/sec: 32.13 - lr: 0.000001
|
460 |
+
2022-02-04 13:21:16,847 epoch 10 - iter 34/177 - loss 2.06850742 - samples/sec: 32.78 - lr: 0.000000
|
461 |
+
2022-02-04 13:21:34,047 epoch 10 - iter 51/177 - loss 2.06653386 - samples/sec: 31.68 - lr: 0.000000
|
462 |
+
2022-02-04 13:21:50,597 epoch 10 - iter 68/177 - loss 2.06650174 - samples/sec: 32.88 - lr: 0.000000
|
463 |
+
2022-02-04 13:22:07,286 epoch 10 - iter 85/177 - loss 2.06409229 - samples/sec: 32.61 - lr: 0.000000
|
464 |
+
2022-02-04 13:22:25,744 epoch 10 - iter 102/177 - loss 2.06162033 - samples/sec: 29.48 - lr: 0.000000
|
465 |
+
2022-02-04 13:22:43,419 epoch 10 - iter 119/177 - loss 2.06248176 - samples/sec: 30.78 - lr: 0.000000
|
466 |
+
2022-02-04 13:22:59,502 epoch 10 - iter 136/177 - loss 2.06392395 - samples/sec: 33.83 - lr: 0.000000
|
467 |
+
2022-02-04 13:23:16,396 epoch 10 - iter 153/177 - loss 2.06446242 - samples/sec: 32.21 - lr: 0.000000
|
468 |
+
2022-02-04 13:23:33,136 epoch 10 - iter 170/177 - loss 2.06210437 - samples/sec: 32.50 - lr: 0.000000
|
469 |
+
2022-02-04 13:23:40,551 ----------------------------------------------------------------------------------------------------
|
470 |
+
2022-02-04 13:23:40,552 EPOCH 10 done: loss 2.0624 - lr 0.0000000
|
471 |
+
2022-02-04 13:23:46,365 DEV : loss 1.8217284679412842 - f1-score (micro avg) 0.9195
|
472 |
+
2022-02-04 13:23:46,367 BAD EPOCHS (no improvement): 4
|
473 |
+
2022-02-04 13:23:47,542 ----------------------------------------------------------------------------------------------------
|
474 |
+
2022-02-04 13:23:47,544 Testing using last state of model ...
|
475 |
+
2022-02-04 13:24:07,461 0.9181 0.9181 0.9181 0.9181
|
476 |
+
2022-02-04 13:24:07,462
|
477 |
+
Results:
|
478 |
+
- F-score (micro) 0.9181
|
479 |
+
- F-score (macro) 0.439
|
480 |
+
- Accuracy 0.9181
|
481 |
+
|
482 |
+
By class:
|
483 |
+
precision recall f1-score support
|
484 |
+
|
485 |
+
NOMcom 0.9530 0.9808 0.9667 2130
|
486 |
+
VERcjg 0.9683 0.9935 0.9807 1535
|
487 |
+
PRE 0.8411 0.9940 0.9112 1331
|
488 |
+
PROper 0.9253 0.9963 0.9595 1368
|
489 |
+
PONfbl 0.9824 0.9993 0.9908 1341
|
490 |
+
ADVgen 0.8179 0.8276 0.8227 841
|
491 |
+
PONfrt 0.9721 1.0000 0.9859 662
|
492 |
+
DETdef 0.9393 0.9967 0.9672 606
|
493 |
+
ADJqua 0.8289 0.9400 0.8810 500
|
494 |
+
VERinf 0.9706 0.9960 0.9831 497
|
495 |
+
DETpos 0.9791 0.9979 0.9884 469
|
496 |
+
CONcoo 0.9645 0.9935 0.9788 465
|
497 |
+
CONsub 0.7437 0.9846 0.8473 389
|
498 |
+
VERppe 0.9042 0.9408 0.9221 321
|
499 |
+
DETndf 0.7270 0.9959 0.8405 246
|
500 |
+
NOMpro 0.9485 0.8340 0.8876 265
|
501 |
+
PROrel 0.9398 0.7519 0.8354 270
|
502 |
+
ADVneg 0.9577 0.7528 0.8430 271
|
503 |
+
DETdem 0.9934 0.9742 0.9837 155
|
504 |
+
PROind 1.0000 0.4894 0.6571 188
|
505 |
+
PROadv 0.9000 0.8108 0.8531 111
|
506 |
+
PROdem 1.0000 0.6387 0.7795 119
|
507 |
+
DETind 0.8000 0.7347 0.7660 98
|
508 |
+
PRE.DETdef 0.0000 0.0000 0.0000 183
|
509 |
+
VERppa 0.0000 0.0000 0.0000 67
|
510 |
+
PROimp 0.0000 0.0000 0.0000 54
|
511 |
+
INJ 0.0000 0.0000 0.0000 35
|
512 |
+
DETcar 0.0000 0.0000 0.0000 31
|
513 |
+
ADJind 0.0000 0.0000 0.0000 30
|
514 |
+
PROint 0.0000 0.0000 0.0000 22
|
515 |
+
ADJcar 0.0000 0.0000 0.0000 21
|
516 |
+
PROcar 0.0000 0.0000 0.0000 18
|
517 |
+
DETrel 0.0000 0.0000 0.0000 16
|
518 |
+
ADJord 0.0000 0.0000 0.0000 16
|
519 |
+
PONpga 0.0000 0.0000 0.0000 16
|
520 |
+
PROpos 0.0000 0.0000 0.0000 14
|
521 |
+
PONpdr 0.0000 0.0000 0.0000 13
|
522 |
+
DETint 0.0000 0.0000 0.0000 10
|
523 |
+
PONpxx 0.0000 0.0000 0.0000 6
|
524 |
+
ADVint 0.0000 0.0000 0.0000 5
|
525 |
+
PRE.PROrel 0.0000 0.0000 0.0000 2
|
526 |
+
latin 0.0000 0.0000 0.0000 2
|
527 |
+
PROord 0.0000 0.0000 0.0000 1
|
528 |
+
PRE.PROdem 0.0000 0.0000 0.0000 1
|
529 |
+
PRE.NOMcom 0.0000 0.0000 0.0000 1
|
530 |
+
ETR 0.0000 0.0000 0.0000 1
|
531 |
+
ADVsub 0.0000 0.0000 0.0000 1
|
532 |
+
|
533 |
+
micro avg 0.9181 0.9181 0.9181 14744
|
534 |
+
macro avg 0.4480 0.4388 0.4390 14744
|
535 |
+
weighted avg 0.8876 0.9181 0.8991 14744
|
536 |
+
samples avg 0.9181 0.9181 0.9181 14744
|
537 |
+
|
538 |
+
2022-02-04 13:24:07,477 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
File without changes
|