Upload model files
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +538 -0
- weights.txt +0 -0
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ce3dd5c362bfc062655fbff2535cf84c7d53e403db2a1fb5a549b49f9594d81
|
3 |
+
size 445100077
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 18:41:01 4 0.0000 3.633058030082742 2.0775277614593506 0.5698 0.5698 0.5698 0.5698
|
3 |
+
2 18:43:46 4 0.0000 1.019771994275212 0.23464356362819672 0.9443 0.9443 0.9443 0.9443
|
4 |
+
3 18:46:34 4 0.0000 0.410349326583172 0.140821173787117 0.9632 0.9632 0.9632 0.9632
|
5 |
+
4 18:49:20 4 0.0000 0.34302561318631913 0.11640190333127975 0.9703 0.9703 0.9703 0.9703
|
6 |
+
5 18:52:05 4 0.0000 0.3097532451655346 0.10135460644960403 0.9729 0.9729 0.9729 0.9729
|
7 |
+
6 18:54:49 4 0.0000 0.2965522425579126 0.09480294585227966 0.974 0.974 0.974 0.974
|
8 |
+
7 18:57:34 4 0.0000 0.28957056620947336 0.09033482521772385 0.9743 0.9743 0.9743 0.9743
|
9 |
+
8 19:00:20 4 0.0000 0.28135947487172785 0.08581043034791946 0.9745 0.9745 0.9745 0.9745
|
10 |
+
9 19:03:08 4 0.0000 0.2826198891036253 0.08502506464719772 0.974 0.974 0.974 0.974
|
11 |
+
10 19:05:54 4 0.0000 0.28319776187525647 0.08448906987905502 0.974 0.974 0.974 0.974
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-01-16 18:38:17,520 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-01-16 18:38:17,523 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): RobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32768, 768, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
41 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
64 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
65 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
87 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
88 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
110 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
111 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
133 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
134 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
(6): RobertaLayer(
|
153 |
+
(attention): RobertaAttention(
|
154 |
+
(self): RobertaSelfAttention(
|
155 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
156 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
157 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
159 |
+
)
|
160 |
+
(output): RobertaSelfOutput(
|
161 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(intermediate): RobertaIntermediate(
|
167 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
168 |
+
)
|
169 |
+
(output): RobertaOutput(
|
170 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
171 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(7): RobertaLayer(
|
176 |
+
(attention): RobertaAttention(
|
177 |
+
(self): RobertaSelfAttention(
|
178 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
179 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
180 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(output): RobertaSelfOutput(
|
184 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
185 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(intermediate): RobertaIntermediate(
|
190 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
191 |
+
)
|
192 |
+
(output): RobertaOutput(
|
193 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
194 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(8): RobertaLayer(
|
199 |
+
(attention): RobertaAttention(
|
200 |
+
(self): RobertaSelfAttention(
|
201 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
202 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
203 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
(output): RobertaSelfOutput(
|
207 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
208 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(intermediate): RobertaIntermediate(
|
213 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
214 |
+
)
|
215 |
+
(output): RobertaOutput(
|
216 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(9): RobertaLayer(
|
222 |
+
(attention): RobertaAttention(
|
223 |
+
(self): RobertaSelfAttention(
|
224 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
225 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
226 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): RobertaSelfOutput(
|
230 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): RobertaIntermediate(
|
236 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
237 |
+
)
|
238 |
+
(output): RobertaOutput(
|
239 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(10): RobertaLayer(
|
245 |
+
(attention): RobertaAttention(
|
246 |
+
(self): RobertaSelfAttention(
|
247 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
248 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
249 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
(output): RobertaSelfOutput(
|
253 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
254 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(intermediate): RobertaIntermediate(
|
259 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
260 |
+
)
|
261 |
+
(output): RobertaOutput(
|
262 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
263 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(11): RobertaLayer(
|
268 |
+
(attention): RobertaAttention(
|
269 |
+
(self): RobertaSelfAttention(
|
270 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
271 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
272 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
274 |
+
)
|
275 |
+
(output): RobertaSelfOutput(
|
276 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
277 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
(intermediate): RobertaIntermediate(
|
282 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
283 |
+
)
|
284 |
+
(output): RobertaOutput(
|
285 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
286 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(pooler): RobertaPooler(
|
293 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
294 |
+
(activation): Tanh()
|
295 |
+
)
|
296 |
+
)
|
297 |
+
)
|
298 |
+
(word_dropout): WordDropout(p=0.05)
|
299 |
+
(locked_dropout): LockedDropout(p=0.5)
|
300 |
+
(linear): Linear(in_features=768, out_features=51, bias=True)
|
301 |
+
(beta): 1.0
|
302 |
+
(weights): None
|
303 |
+
(weight_tensor) None
|
304 |
+
)"
|
305 |
+
2022-01-16 18:38:17,526 ----------------------------------------------------------------------------------------------------
|
306 |
+
2022-01-16 18:38:17,526 Corpus: "Corpus: 5642 train + 195 dev + 649 test sentences"
|
307 |
+
2022-01-16 18:38:17,526 ----------------------------------------------------------------------------------------------------
|
308 |
+
2022-01-16 18:38:17,527 Parameters:
|
309 |
+
2022-01-16 18:38:17,527 - learning_rate: "5e-06"
|
310 |
+
2022-01-16 18:38:17,527 - mini_batch_size: "32"
|
311 |
+
2022-01-16 18:38:17,527 - patience: "3"
|
312 |
+
2022-01-16 18:38:17,528 - anneal_factor: "0.5"
|
313 |
+
2022-01-16 18:38:17,528 - max_epochs: "10"
|
314 |
+
2022-01-16 18:38:17,528 - shuffle: "True"
|
315 |
+
2022-01-16 18:38:17,528 - train_with_dev: "False"
|
316 |
+
2022-01-16 18:38:17,529 - batch_growth_annealing: "False"
|
317 |
+
2022-01-16 18:38:17,529 ----------------------------------------------------------------------------------------------------
|
318 |
+
2022-01-16 18:38:17,529 Model training base path: "resources/taggers/pos-transformer"
|
319 |
+
2022-01-16 18:38:17,530 ----------------------------------------------------------------------------------------------------
|
320 |
+
2022-01-16 18:38:17,530 Device: cuda:0
|
321 |
+
2022-01-16 18:38:17,530 ----------------------------------------------------------------------------------------------------
|
322 |
+
2022-01-16 18:38:17,530 Embeddings storage mode: none
|
323 |
+
2022-01-16 18:38:17,534 ----------------------------------------------------------------------------------------------------
|
324 |
+
2022-01-16 18:38:34,359 epoch 1 - iter 17/177 - loss 4.21719545 - samples/sec: 32.34 - lr: 0.000000
|
325 |
+
2022-01-16 18:38:49,400 epoch 1 - iter 34/177 - loss 4.19345430 - samples/sec: 36.17 - lr: 0.000001
|
326 |
+
2022-01-16 18:39:05,256 epoch 1 - iter 51/177 - loss 4.15633603 - samples/sec: 34.31 - lr: 0.000001
|
327 |
+
2022-01-16 18:39:19,936 epoch 1 - iter 68/177 - loss 4.11811385 - samples/sec: 37.07 - lr: 0.000002
|
328 |
+
2022-01-16 18:39:35,631 epoch 1 - iter 85/177 - loss 4.06705216 - samples/sec: 34.68 - lr: 0.000002
|
329 |
+
2022-01-16 18:39:49,539 epoch 1 - iter 102/177 - loss 4.01162833 - samples/sec: 39.12 - lr: 0.000003
|
330 |
+
2022-01-16 18:40:04,517 epoch 1 - iter 119/177 - loss 3.95117440 - samples/sec: 36.33 - lr: 0.000003
|
331 |
+
2022-01-16 18:40:18,637 epoch 1 - iter 136/177 - loss 3.88391044 - samples/sec: 38.53 - lr: 0.000004
|
332 |
+
2022-01-16 18:40:34,602 epoch 1 - iter 153/177 - loss 3.78662706 - samples/sec: 34.08 - lr: 0.000004
|
333 |
+
2022-01-16 18:40:50,297 epoch 1 - iter 170/177 - loss 3.66565316 - samples/sec: 34.67 - lr: 0.000005
|
334 |
+
2022-01-16 18:40:55,405 ----------------------------------------------------------------------------------------------------
|
335 |
+
2022-01-16 18:40:55,406 EPOCH 1 done: loss 3.6331 - lr 0.0000050
|
336 |
+
2022-01-16 18:41:01,071 DEV : loss 2.0775277614593506 - f1-score (micro avg) 0.5698
|
337 |
+
2022-01-16 18:41:01,073 BAD EPOCHS (no improvement): 4
|
338 |
+
2022-01-16 18:41:01,075 ----------------------------------------------------------------------------------------------------
|
339 |
+
2022-01-16 18:41:14,873 epoch 2 - iter 17/177 - loss 2.20805337 - samples/sec: 39.44 - lr: 0.000005
|
340 |
+
2022-01-16 18:41:29,867 epoch 2 - iter 34/177 - loss 1.96658974 - samples/sec: 36.29 - lr: 0.000005
|
341 |
+
2022-01-16 18:41:45,607 epoch 2 - iter 51/177 - loss 1.75508128 - samples/sec: 34.57 - lr: 0.000005
|
342 |
+
2022-01-16 18:42:01,386 epoch 2 - iter 68/177 - loss 1.58575541 - samples/sec: 34.48 - lr: 0.000005
|
343 |
+
2022-01-16 18:42:16,804 epoch 2 - iter 85/177 - loss 1.45429547 - samples/sec: 35.29 - lr: 0.000005
|
344 |
+
2022-01-16 18:42:32,178 epoch 2 - iter 102/177 - loss 1.34526502 - samples/sec: 35.39 - lr: 0.000005
|
345 |
+
2022-01-16 18:42:48,735 epoch 2 - iter 119/177 - loss 1.23724431 - samples/sec: 32.86 - lr: 0.000005
|
346 |
+
2022-01-16 18:43:03,310 epoch 2 - iter 136/177 - loss 1.16223838 - samples/sec: 37.33 - lr: 0.000005
|
347 |
+
2022-01-16 18:43:18,304 epoch 2 - iter 153/177 - loss 1.09870495 - samples/sec: 36.29 - lr: 0.000005
|
348 |
+
2022-01-16 18:43:34,956 epoch 2 - iter 170/177 - loss 1.03855466 - samples/sec: 32.67 - lr: 0.000004
|
349 |
+
2022-01-16 18:43:40,722 ----------------------------------------------------------------------------------------------------
|
350 |
+
2022-01-16 18:43:40,723 EPOCH 2 done: loss 1.0198 - lr 0.0000044
|
351 |
+
2022-01-16 18:43:46,405 DEV : loss 0.23464356362819672 - f1-score (micro avg) 0.9443
|
352 |
+
2022-01-16 18:43:46,407 BAD EPOCHS (no improvement): 4
|
353 |
+
2022-01-16 18:43:46,408 ----------------------------------------------------------------------------------------------------
|
354 |
+
2022-01-16 18:44:01,387 epoch 3 - iter 17/177 - loss 0.46476740 - samples/sec: 36.33 - lr: 0.000004
|
355 |
+
2022-01-16 18:44:17,394 epoch 3 - iter 34/177 - loss 0.46233323 - samples/sec: 33.99 - lr: 0.000004
|
356 |
+
2022-01-16 18:44:32,304 epoch 3 - iter 51/177 - loss 0.45235428 - samples/sec: 36.49 - lr: 0.000004
|
357 |
+
2022-01-16 18:44:46,826 epoch 3 - iter 68/177 - loss 0.44547326 - samples/sec: 37.47 - lr: 0.000004
|
358 |
+
2022-01-16 18:45:03,857 epoch 3 - iter 85/177 - loss 0.43503033 - samples/sec: 31.95 - lr: 0.000004
|
359 |
+
2022-01-16 18:45:20,043 epoch 3 - iter 102/177 - loss 0.42734805 - samples/sec: 33.63 - lr: 0.000004
|
360 |
+
2022-01-16 18:45:36,060 epoch 3 - iter 119/177 - loss 0.42237100 - samples/sec: 33.97 - lr: 0.000004
|
361 |
+
2022-01-16 18:45:51,576 epoch 3 - iter 136/177 - loss 0.41700412 - samples/sec: 35.07 - lr: 0.000004
|
362 |
+
2022-01-16 18:46:07,252 epoch 3 - iter 153/177 - loss 0.41455352 - samples/sec: 34.71 - lr: 0.000004
|
363 |
+
2022-01-16 18:46:23,597 epoch 3 - iter 170/177 - loss 0.41134424 - samples/sec: 33.29 - lr: 0.000004
|
364 |
+
2022-01-16 18:46:29,222 ----------------------------------------------------------------------------------------------------
|
365 |
+
2022-01-16 18:46:29,223 EPOCH 3 done: loss 0.4103 - lr 0.0000039
|
366 |
+
2022-01-16 18:46:34,899 DEV : loss 0.140821173787117 - f1-score (micro avg) 0.9632
|
367 |
+
2022-01-16 18:46:34,901 BAD EPOCHS (no improvement): 4
|
368 |
+
2022-01-16 18:46:34,902 ----------------------------------------------------------------------------------------------------
|
369 |
+
2022-01-16 18:46:49,649 epoch 4 - iter 17/177 - loss 0.34770276 - samples/sec: 36.90 - lr: 0.000004
|
370 |
+
2022-01-16 18:47:05,137 epoch 4 - iter 34/177 - loss 0.34449519 - samples/sec: 35.13 - lr: 0.000004
|
371 |
+
2022-01-16 18:47:20,666 epoch 4 - iter 51/177 - loss 0.35038471 - samples/sec: 35.04 - lr: 0.000004
|
372 |
+
2022-01-16 18:47:35,593 epoch 4 - iter 68/177 - loss 0.34965167 - samples/sec: 36.45 - lr: 0.000004
|
373 |
+
2022-01-16 18:47:51,537 epoch 4 - iter 85/177 - loss 0.35074386 - samples/sec: 34.13 - lr: 0.000004
|
374 |
+
2022-01-16 18:48:06,575 epoch 4 - iter 102/177 - loss 0.34919573 - samples/sec: 36.18 - lr: 0.000004
|
375 |
+
2022-01-16 18:48:22,671 epoch 4 - iter 119/177 - loss 0.34906482 - samples/sec: 33.80 - lr: 0.000004
|
376 |
+
2022-01-16 18:48:38,152 epoch 4 - iter 136/177 - loss 0.34645574 - samples/sec: 35.15 - lr: 0.000003
|
377 |
+
2022-01-16 18:48:53,425 epoch 4 - iter 153/177 - loss 0.34515747 - samples/sec: 35.63 - lr: 0.000003
|
378 |
+
2022-01-16 18:49:08,614 epoch 4 - iter 170/177 - loss 0.34411478 - samples/sec: 35.82 - lr: 0.000003
|
379 |
+
2022-01-16 18:49:14,556 ----------------------------------------------------------------------------------------------------
|
380 |
+
2022-01-16 18:49:14,557 EPOCH 4 done: loss 0.3430 - lr 0.0000033
|
381 |
+
2022-01-16 18:49:20,294 DEV : loss 0.11640190333127975 - f1-score (micro avg) 0.9703
|
382 |
+
2022-01-16 18:49:20,297 BAD EPOCHS (no improvement): 4
|
383 |
+
2022-01-16 18:49:20,297 ----------------------------------------------------------------------------------------------------
|
384 |
+
2022-01-16 18:49:36,057 epoch 5 - iter 17/177 - loss 0.31027747 - samples/sec: 34.53 - lr: 0.000003
|
385 |
+
2022-01-16 18:49:51,823 epoch 5 - iter 34/177 - loss 0.31176440 - samples/sec: 34.51 - lr: 0.000003
|
386 |
+
2022-01-16 18:50:06,630 epoch 5 - iter 51/177 - loss 0.31452075 - samples/sec: 36.75 - lr: 0.000003
|
387 |
+
2022-01-16 18:50:22,294 epoch 5 - iter 68/177 - loss 0.31209996 - samples/sec: 34.73 - lr: 0.000003
|
388 |
+
2022-01-16 18:50:36,301 epoch 5 - iter 85/177 - loss 0.31357991 - samples/sec: 38.85 - lr: 0.000003
|
389 |
+
2022-01-16 18:50:52,962 epoch 5 - iter 102/177 - loss 0.31496866 - samples/sec: 32.66 - lr: 0.000003
|
390 |
+
2022-01-16 18:51:08,260 epoch 5 - iter 119/177 - loss 0.31294977 - samples/sec: 35.57 - lr: 0.000003
|
391 |
+
2022-01-16 18:51:24,158 epoch 5 - iter 136/177 - loss 0.31189665 - samples/sec: 34.22 - lr: 0.000003
|
392 |
+
2022-01-16 18:51:39,145 epoch 5 - iter 153/177 - loss 0.31138881 - samples/sec: 36.31 - lr: 0.000003
|
393 |
+
2022-01-16 18:51:54,700 epoch 5 - iter 170/177 - loss 0.30960234 - samples/sec: 34.98 - lr: 0.000003
|
394 |
+
2022-01-16 18:51:59,742 ----------------------------------------------------------------------------------------------------
|
395 |
+
2022-01-16 18:51:59,743 EPOCH 5 done: loss 0.3098 - lr 0.0000028
|
396 |
+
2022-01-16 18:52:05,466 DEV : loss 0.10135460644960403 - f1-score (micro avg) 0.9729
|
397 |
+
2022-01-16 18:52:05,468 BAD EPOCHS (no improvement): 4
|
398 |
+
2022-01-16 18:52:05,469 ----------------------------------------------------------------------------------------------------
|
399 |
+
2022-01-16 18:52:20,458 epoch 6 - iter 17/177 - loss 0.30154787 - samples/sec: 36.30 - lr: 0.000003
|
400 |
+
2022-01-16 18:52:34,917 epoch 6 - iter 34/177 - loss 0.30197436 - samples/sec: 37.63 - lr: 0.000003
|
401 |
+
2022-01-16 18:52:49,618 epoch 6 - iter 51/177 - loss 0.30167136 - samples/sec: 37.01 - lr: 0.000003
|
402 |
+
2022-01-16 18:53:04,988 epoch 6 - iter 68/177 - loss 0.30196611 - samples/sec: 35.40 - lr: 0.000003
|
403 |
+
2022-01-16 18:53:20,297 epoch 6 - iter 85/177 - loss 0.30182940 - samples/sec: 35.54 - lr: 0.000003
|
404 |
+
2022-01-16 18:53:35,734 epoch 6 - iter 102/177 - loss 0.30003109 - samples/sec: 35.25 - lr: 0.000002
|
405 |
+
2022-01-16 18:53:51,701 epoch 6 - iter 119/177 - loss 0.30091205 - samples/sec: 34.08 - lr: 0.000002
|
406 |
+
2022-01-16 18:54:06,831 epoch 6 - iter 136/177 - loss 0.30099483 - samples/sec: 35.96 - lr: 0.000002
|
407 |
+
2022-01-16 18:54:22,486 epoch 6 - iter 153/177 - loss 0.29848715 - samples/sec: 34.76 - lr: 0.000002
|
408 |
+
2022-01-16 18:54:37,203 epoch 6 - iter 170/177 - loss 0.29689481 - samples/sec: 36.97 - lr: 0.000002
|
409 |
+
2022-01-16 18:54:44,337 ----------------------------------------------------------------------------------------------------
|
410 |
+
2022-01-16 18:54:44,338 EPOCH 6 done: loss 0.2966 - lr 0.0000022
|
411 |
+
2022-01-16 18:54:49,620 DEV : loss 0.09480294585227966 - f1-score (micro avg) 0.974
|
412 |
+
2022-01-16 18:54:49,623 BAD EPOCHS (no improvement): 4
|
413 |
+
2022-01-16 18:54:49,623 ----------------------------------------------------------------------------------------------------
|
414 |
+
2022-01-16 18:55:05,515 epoch 7 - iter 17/177 - loss 0.28239213 - samples/sec: 34.24 - lr: 0.000002
|
415 |
+
2022-01-16 18:55:20,295 epoch 7 - iter 34/177 - loss 0.28557506 - samples/sec: 36.81 - lr: 0.000002
|
416 |
+
2022-01-16 18:55:35,660 epoch 7 - iter 51/177 - loss 0.28541785 - samples/sec: 35.41 - lr: 0.000002
|
417 |
+
2022-01-16 18:55:51,758 epoch 7 - iter 68/177 - loss 0.29320767 - samples/sec: 33.80 - lr: 0.000002
|
418 |
+
2022-01-16 18:56:06,783 epoch 7 - iter 85/177 - loss 0.29339894 - samples/sec: 36.21 - lr: 0.000002
|
419 |
+
2022-01-16 18:56:22,815 epoch 7 - iter 102/177 - loss 0.29253486 - samples/sec: 33.94 - lr: 0.000002
|
420 |
+
2022-01-16 18:56:39,028 epoch 7 - iter 119/177 - loss 0.29145637 - samples/sec: 33.56 - lr: 0.000002
|
421 |
+
2022-01-16 18:56:54,361 epoch 7 - iter 136/177 - loss 0.29111952 - samples/sec: 35.49 - lr: 0.000002
|
422 |
+
2022-01-16 18:57:09,548 epoch 7 - iter 153/177 - loss 0.29113036 - samples/sec: 35.83 - lr: 0.000002
|
423 |
+
2022-01-16 18:57:23,584 epoch 7 - iter 170/177 - loss 0.29066532 - samples/sec: 38.76 - lr: 0.000002
|
424 |
+
2022-01-16 18:57:29,584 ----------------------------------------------------------------------------------------------------
|
425 |
+
2022-01-16 18:57:29,585 EPOCH 7 done: loss 0.2896 - lr 0.0000017
|
426 |
+
2022-01-16 18:57:34,894 DEV : loss 0.09033482521772385 - f1-score (micro avg) 0.9743
|
427 |
+
2022-01-16 18:57:34,896 BAD EPOCHS (no improvement): 4
|
428 |
+
2022-01-16 18:57:34,898 ----------------------------------------------------------------------------------------------------
|
429 |
+
2022-01-16 18:57:50,623 epoch 8 - iter 17/177 - loss 0.28329047 - samples/sec: 34.60 - lr: 0.000002
|
430 |
+
2022-01-16 18:58:06,213 epoch 8 - iter 34/177 - loss 0.28096448 - samples/sec: 34.90 - lr: 0.000002
|
431 |
+
2022-01-16 18:58:22,737 epoch 8 - iter 51/177 - loss 0.28201738 - samples/sec: 32.93 - lr: 0.000002
|
432 |
+
2022-01-16 18:58:37,507 epoch 8 - iter 68/177 - loss 0.28137267 - samples/sec: 36.84 - lr: 0.000001
|
433 |
+
2022-01-16 18:58:52,962 epoch 8 - iter 85/177 - loss 0.28405564 - samples/sec: 35.21 - lr: 0.000001
|
434 |
+
2022-01-16 18:59:08,711 epoch 8 - iter 102/177 - loss 0.28496531 - samples/sec: 34.55 - lr: 0.000001
|
435 |
+
2022-01-16 18:59:23,238 epoch 8 - iter 119/177 - loss 0.28466528 - samples/sec: 37.46 - lr: 0.000001
|
436 |
+
2022-01-16 18:59:38,520 epoch 8 - iter 136/177 - loss 0.28246598 - samples/sec: 35.60 - lr: 0.000001
|
437 |
+
2022-01-16 18:59:53,789 epoch 8 - iter 153/177 - loss 0.28078088 - samples/sec: 35.63 - lr: 0.000001
|
438 |
+
2022-01-16 19:00:09,934 epoch 8 - iter 170/177 - loss 0.28075535 - samples/sec: 33.70 - lr: 0.000001
|
439 |
+
2022-01-16 19:00:15,100 ----------------------------------------------------------------------------------------------------
|
440 |
+
2022-01-16 19:00:15,101 EPOCH 8 done: loss 0.2814 - lr 0.0000011
|
441 |
+
2022-01-16 19:00:20,403 DEV : loss 0.08581043034791946 - f1-score (micro avg) 0.9745
|
442 |
+
2022-01-16 19:00:20,406 BAD EPOCHS (no improvement): 4
|
443 |
+
2022-01-16 19:00:20,406 ----------------------------------------------------------------------------------------------------
|
444 |
+
2022-01-16 19:00:36,469 epoch 9 - iter 17/177 - loss 0.27366042 - samples/sec: 33.87 - lr: 0.000001
|
445 |
+
2022-01-16 19:00:51,042 epoch 9 - iter 34/177 - loss 0.27417563 - samples/sec: 37.34 - lr: 0.000001
|
446 |
+
2022-01-16 19:01:06,968 epoch 9 - iter 51/177 - loss 0.27908066 - samples/sec: 34.16 - lr: 0.000001
|
447 |
+
2022-01-16 19:01:21,551 epoch 9 - iter 68/177 - loss 0.27815091 - samples/sec: 37.31 - lr: 0.000001
|
448 |
+
2022-01-16 19:01:38,409 epoch 9 - iter 85/177 - loss 0.27855783 - samples/sec: 32.28 - lr: 0.000001
|
449 |
+
2022-01-16 19:01:53,547 epoch 9 - iter 102/177 - loss 0.28336618 - samples/sec: 35.94 - lr: 0.000001
|
450 |
+
2022-01-16 19:02:09,188 epoch 9 - iter 119/177 - loss 0.28196400 - samples/sec: 34.79 - lr: 0.000001
|
451 |
+
2022-01-16 19:02:25,112 epoch 9 - iter 136/177 - loss 0.28112997 - samples/sec: 34.17 - lr: 0.000001
|
452 |
+
2022-01-16 19:02:41,122 epoch 9 - iter 153/177 - loss 0.28271008 - samples/sec: 33.99 - lr: 0.000001
|
453 |
+
2022-01-16 19:02:57,003 epoch 9 - iter 170/177 - loss 0.28254205 - samples/sec: 34.26 - lr: 0.000001
|
454 |
+
2022-01-16 19:03:02,602 ----------------------------------------------------------------------------------------------------
|
455 |
+
2022-01-16 19:03:02,603 EPOCH 9 done: loss 0.2826 - lr 0.0000006
|
456 |
+
2022-01-16 19:03:08,344 DEV : loss 0.08502506464719772 - f1-score (micro avg) 0.974
|
457 |
+
2022-01-16 19:03:08,347 BAD EPOCHS (no improvement): 4
|
458 |
+
2022-01-16 19:03:08,348 ----------------------------------------------------------------------------------------------------
|
459 |
+
2022-01-16 19:03:22,683 epoch 10 - iter 17/177 - loss 0.29810598 - samples/sec: 37.96 - lr: 0.000001
|
460 |
+
2022-01-16 19:03:38,044 epoch 10 - iter 34/177 - loss 0.29633129 - samples/sec: 35.42 - lr: 0.000000
|
461 |
+
2022-01-16 19:03:54,399 epoch 10 - iter 51/177 - loss 0.28500408 - samples/sec: 33.27 - lr: 0.000000
|
462 |
+
2022-01-16 19:04:09,802 epoch 10 - iter 68/177 - loss 0.28305573 - samples/sec: 35.32 - lr: 0.000000
|
463 |
+
2022-01-16 19:04:25,641 epoch 10 - iter 85/177 - loss 0.28663575 - samples/sec: 34.35 - lr: 0.000000
|
464 |
+
2022-01-16 19:04:40,354 epoch 10 - iter 102/177 - loss 0.28653115 - samples/sec: 36.98 - lr: 0.000000
|
465 |
+
2022-01-16 19:04:56,702 epoch 10 - iter 119/177 - loss 0.28579694 - samples/sec: 33.28 - lr: 0.000000
|
466 |
+
2022-01-16 19:05:12,070 epoch 10 - iter 136/177 - loss 0.28590446 - samples/sec: 35.40 - lr: 0.000000
|
467 |
+
2022-01-16 19:05:27,377 epoch 10 - iter 153/177 - loss 0.28533742 - samples/sec: 35.55 - lr: 0.000000
|
468 |
+
2022-01-16 19:05:42,603 epoch 10 - iter 170/177 - loss 0.28333786 - samples/sec: 35.73 - lr: 0.000000
|
469 |
+
2022-01-16 19:05:48,443 ----------------------------------------------------------------------------------------------------
|
470 |
+
2022-01-16 19:05:48,444 EPOCH 10 done: loss 0.2832 - lr 0.0000000
|
471 |
+
2022-01-16 19:05:54,211 DEV : loss 0.08448906987905502 - f1-score (micro avg) 0.974
|
472 |
+
2022-01-16 19:05:54,214 BAD EPOCHS (no improvement): 4
|
473 |
+
2022-01-16 19:05:55,439 ----------------------------------------------------------------------------------------------------
|
474 |
+
2022-01-16 19:05:55,440 Testing using last state of model ...
|
475 |
+
2022-01-16 19:06:15,179 0.9788 0.9788 0.9788 0.9788
|
476 |
+
2022-01-16 19:06:15,180
|
477 |
+
Results:
|
478 |
+
- F-score (micro) 0.9788
|
479 |
+
- F-score (macro) 0.7527
|
480 |
+
- Accuracy 0.9788
|
481 |
+
|
482 |
+
By class:
|
483 |
+
precision recall f1-score support
|
484 |
+
|
485 |
+
NOMcom 0.9850 0.9840 0.9845 2130
|
486 |
+
VERcjg 0.9974 0.9954 0.9964 1535
|
487 |
+
PROper 0.9912 0.9920 0.9916 1368
|
488 |
+
PONfbl 1.0000 0.9993 0.9996 1341
|
489 |
+
PRE 0.9881 0.9955 0.9918 1331
|
490 |
+
ADVgen 0.9713 0.9263 0.9483 841
|
491 |
+
PONfrt 0.9895 1.0000 0.9947 662
|
492 |
+
DETdef 0.9983 0.9983 0.9983 606
|
493 |
+
ADJqua 0.9259 0.9500 0.9378 500
|
494 |
+
VERinf 0.9920 1.0000 0.9960 497
|
495 |
+
DETpos 1.0000 0.9957 0.9979 469
|
496 |
+
CONcoo 0.9957 0.9935 0.9946 465
|
497 |
+
CONsub 0.9337 0.9409 0.9373 389
|
498 |
+
VERppe 0.9659 0.9720 0.9689 321
|
499 |
+
ADVneg 0.9476 1.0000 0.9731 271
|
500 |
+
PROrel 0.9194 0.9296 0.9245 270
|
501 |
+
NOMpro 0.9634 0.9925 0.9777 265
|
502 |
+
DETndf 0.9958 0.9715 0.9835 246
|
503 |
+
PROind 0.9526 0.9628 0.9577 188
|
504 |
+
PRE.DETdef 0.9785 0.9945 0.9864 183
|
505 |
+
DETdem 1.0000 0.9806 0.9902 155
|
506 |
+
PROdem 0.9675 1.0000 0.9835 119
|
507 |
+
PROadv 0.9083 0.9820 0.9437 111
|
508 |
+
DETind 0.9223 0.9694 0.9453 98
|
509 |
+
VERppa 0.9683 0.9104 0.9385 67
|
510 |
+
PROimp 0.8333 0.8333 0.8333 54
|
511 |
+
DETcar 0.7381 1.0000 0.8493 31
|
512 |
+
INJ 1.0000 0.8571 0.9231 35
|
513 |
+
ADJind 0.9310 0.9000 0.9153 30
|
514 |
+
PROint 0.6957 0.7273 0.7111 22
|
515 |
+
ADJcar 0.8333 0.4762 0.6061 21
|
516 |
+
PROcar 0.7333 0.6111 0.6667 18
|
517 |
+
PONpga 1.0000 1.0000 1.0000 16
|
518 |
+
PROpos 0.9231 0.8571 0.8889 14
|
519 |
+
DETrel 0.6364 0.4375 0.5185 16
|
520 |
+
DETint 0.4706 0.8000 0.5926 10
|
521 |
+
PONpdr 1.0000 1.0000 1.0000 13
|
522 |
+
ADJord 0.8889 0.5000 0.6400 16
|
523 |
+
ADVint 1.0000 0.8000 0.8889 5
|
524 |
+
PONpxx 0.0000 0.0000 0.0000 6
|
525 |
+
PRE.PROrel 0.0000 0.0000 0.0000 2
|
526 |
+
latin 0.0000 0.0000 0.0000 2
|
527 |
+
PROord 0.0000 0.0000 0.0000 1
|
528 |
+
PRE.PROdem 0.0000 0.0000 0.0000 1
|
529 |
+
PRE.NOMcom 0.0000 0.0000 0.0000 1
|
530 |
+
ETR 0.0000 0.0000 0.0000 1
|
531 |
+
ADVsub 0.0000 0.0000 0.0000 1
|
532 |
+
|
533 |
+
micro avg 0.9788 0.9788 0.9788 14744
|
534 |
+
macro avg 0.7647 0.7497 0.7527 14744
|
535 |
+
weighted avg 0.9781 0.9788 0.9782 14744
|
536 |
+
samples avg 0.9788 0.9788 0.9788 14744
|
537 |
+
|
538 |
+
2022-01-16 19:06:15,180 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
File without changes
|