pjox commited on
Commit
a61610e
1 Parent(s): 03838b2

Upload model files

Browse files
Files changed (6) hide show
  1. dev.tsv +0 -0
  2. final-model.pt +3 -0
  3. loss.tsv +11 -0
  4. test.tsv +0 -0
  5. training.log +538 -0
  6. weights.txt +0 -0
dev.tsv ADDED
The diff for this file is too large to render. See raw diff
 
final-model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ce3dd5c362bfc062655fbff2535cf84c7d53e403db2a1fb5a549b49f9594d81
3
+ size 445100077
loss.tsv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
2
+ 1 18:41:01 4 0.0000 3.633058030082742 2.0775277614593506 0.5698 0.5698 0.5698 0.5698
3
+ 2 18:43:46 4 0.0000 1.019771994275212 0.23464356362819672 0.9443 0.9443 0.9443 0.9443
4
+ 3 18:46:34 4 0.0000 0.410349326583172 0.140821173787117 0.9632 0.9632 0.9632 0.9632
5
+ 4 18:49:20 4 0.0000 0.34302561318631913 0.11640190333127975 0.9703 0.9703 0.9703 0.9703
6
+ 5 18:52:05 4 0.0000 0.3097532451655346 0.10135460644960403 0.9729 0.9729 0.9729 0.9729
7
+ 6 18:54:49 4 0.0000 0.2965522425579126 0.09480294585227966 0.974 0.974 0.974 0.974
8
+ 7 18:57:34 4 0.0000 0.28957056620947336 0.09033482521772385 0.9743 0.9743 0.9743 0.9743
9
+ 8 19:00:20 4 0.0000 0.28135947487172785 0.08581043034791946 0.9745 0.9745 0.9745 0.9745
10
+ 9 19:03:08 4 0.0000 0.2826198891036253 0.08502506464719772 0.974 0.974 0.974 0.974
11
+ 10 19:05:54 4 0.0000 0.28319776187525647 0.08448906987905502 0.974 0.974 0.974 0.974
test.tsv ADDED
The diff for this file is too large to render. See raw diff
 
training.log ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-01-16 18:38:17,520 ----------------------------------------------------------------------------------------------------
2
+ 2022-01-16 18:38:17,523 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): RobertaModel(
5
+ (embeddings): RobertaEmbeddings(
6
+ (word_embeddings): Embedding(32768, 768, padding_idx=1)
7
+ (position_embeddings): Embedding(514, 768, padding_idx=1)
8
+ (token_type_embeddings): Embedding(1, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): RobertaEncoder(
13
+ (layer): ModuleList(
14
+ (0): RobertaLayer(
15
+ (attention): RobertaAttention(
16
+ (self): RobertaSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): RobertaSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): RobertaIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ )
31
+ (output): RobertaOutput(
32
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
33
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
34
+ (dropout): Dropout(p=0.1, inplace=False)
35
+ )
36
+ )
37
+ (1): RobertaLayer(
38
+ (attention): RobertaAttention(
39
+ (self): RobertaSelfAttention(
40
+ (query): Linear(in_features=768, out_features=768, bias=True)
41
+ (key): Linear(in_features=768, out_features=768, bias=True)
42
+ (value): Linear(in_features=768, out_features=768, bias=True)
43
+ (dropout): Dropout(p=0.1, inplace=False)
44
+ )
45
+ (output): RobertaSelfOutput(
46
+ (dense): Linear(in_features=768, out_features=768, bias=True)
47
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
48
+ (dropout): Dropout(p=0.1, inplace=False)
49
+ )
50
+ )
51
+ (intermediate): RobertaIntermediate(
52
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
53
+ )
54
+ (output): RobertaOutput(
55
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
56
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
57
+ (dropout): Dropout(p=0.1, inplace=False)
58
+ )
59
+ )
60
+ (2): RobertaLayer(
61
+ (attention): RobertaAttention(
62
+ (self): RobertaSelfAttention(
63
+ (query): Linear(in_features=768, out_features=768, bias=True)
64
+ (key): Linear(in_features=768, out_features=768, bias=True)
65
+ (value): Linear(in_features=768, out_features=768, bias=True)
66
+ (dropout): Dropout(p=0.1, inplace=False)
67
+ )
68
+ (output): RobertaSelfOutput(
69
+ (dense): Linear(in_features=768, out_features=768, bias=True)
70
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
71
+ (dropout): Dropout(p=0.1, inplace=False)
72
+ )
73
+ )
74
+ (intermediate): RobertaIntermediate(
75
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
76
+ )
77
+ (output): RobertaOutput(
78
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
79
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
80
+ (dropout): Dropout(p=0.1, inplace=False)
81
+ )
82
+ )
83
+ (3): RobertaLayer(
84
+ (attention): RobertaAttention(
85
+ (self): RobertaSelfAttention(
86
+ (query): Linear(in_features=768, out_features=768, bias=True)
87
+ (key): Linear(in_features=768, out_features=768, bias=True)
88
+ (value): Linear(in_features=768, out_features=768, bias=True)
89
+ (dropout): Dropout(p=0.1, inplace=False)
90
+ )
91
+ (output): RobertaSelfOutput(
92
+ (dense): Linear(in_features=768, out_features=768, bias=True)
93
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
94
+ (dropout): Dropout(p=0.1, inplace=False)
95
+ )
96
+ )
97
+ (intermediate): RobertaIntermediate(
98
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
99
+ )
100
+ (output): RobertaOutput(
101
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
102
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
103
+ (dropout): Dropout(p=0.1, inplace=False)
104
+ )
105
+ )
106
+ (4): RobertaLayer(
107
+ (attention): RobertaAttention(
108
+ (self): RobertaSelfAttention(
109
+ (query): Linear(in_features=768, out_features=768, bias=True)
110
+ (key): Linear(in_features=768, out_features=768, bias=True)
111
+ (value): Linear(in_features=768, out_features=768, bias=True)
112
+ (dropout): Dropout(p=0.1, inplace=False)
113
+ )
114
+ (output): RobertaSelfOutput(
115
+ (dense): Linear(in_features=768, out_features=768, bias=True)
116
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
117
+ (dropout): Dropout(p=0.1, inplace=False)
118
+ )
119
+ )
120
+ (intermediate): RobertaIntermediate(
121
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
122
+ )
123
+ (output): RobertaOutput(
124
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
125
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
126
+ (dropout): Dropout(p=0.1, inplace=False)
127
+ )
128
+ )
129
+ (5): RobertaLayer(
130
+ (attention): RobertaAttention(
131
+ (self): RobertaSelfAttention(
132
+ (query): Linear(in_features=768, out_features=768, bias=True)
133
+ (key): Linear(in_features=768, out_features=768, bias=True)
134
+ (value): Linear(in_features=768, out_features=768, bias=True)
135
+ (dropout): Dropout(p=0.1, inplace=False)
136
+ )
137
+ (output): RobertaSelfOutput(
138
+ (dense): Linear(in_features=768, out_features=768, bias=True)
139
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ )
143
+ (intermediate): RobertaIntermediate(
144
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
145
+ )
146
+ (output): RobertaOutput(
147
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
148
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
149
+ (dropout): Dropout(p=0.1, inplace=False)
150
+ )
151
+ )
152
+ (6): RobertaLayer(
153
+ (attention): RobertaAttention(
154
+ (self): RobertaSelfAttention(
155
+ (query): Linear(in_features=768, out_features=768, bias=True)
156
+ (key): Linear(in_features=768, out_features=768, bias=True)
157
+ (value): Linear(in_features=768, out_features=768, bias=True)
158
+ (dropout): Dropout(p=0.1, inplace=False)
159
+ )
160
+ (output): RobertaSelfOutput(
161
+ (dense): Linear(in_features=768, out_features=768, bias=True)
162
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
163
+ (dropout): Dropout(p=0.1, inplace=False)
164
+ )
165
+ )
166
+ (intermediate): RobertaIntermediate(
167
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
168
+ )
169
+ (output): RobertaOutput(
170
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
171
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
172
+ (dropout): Dropout(p=0.1, inplace=False)
173
+ )
174
+ )
175
+ (7): RobertaLayer(
176
+ (attention): RobertaAttention(
177
+ (self): RobertaSelfAttention(
178
+ (query): Linear(in_features=768, out_features=768, bias=True)
179
+ (key): Linear(in_features=768, out_features=768, bias=True)
180
+ (value): Linear(in_features=768, out_features=768, bias=True)
181
+ (dropout): Dropout(p=0.1, inplace=False)
182
+ )
183
+ (output): RobertaSelfOutput(
184
+ (dense): Linear(in_features=768, out_features=768, bias=True)
185
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
186
+ (dropout): Dropout(p=0.1, inplace=False)
187
+ )
188
+ )
189
+ (intermediate): RobertaIntermediate(
190
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
191
+ )
192
+ (output): RobertaOutput(
193
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
194
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
195
+ (dropout): Dropout(p=0.1, inplace=False)
196
+ )
197
+ )
198
+ (8): RobertaLayer(
199
+ (attention): RobertaAttention(
200
+ (self): RobertaSelfAttention(
201
+ (query): Linear(in_features=768, out_features=768, bias=True)
202
+ (key): Linear(in_features=768, out_features=768, bias=True)
203
+ (value): Linear(in_features=768, out_features=768, bias=True)
204
+ (dropout): Dropout(p=0.1, inplace=False)
205
+ )
206
+ (output): RobertaSelfOutput(
207
+ (dense): Linear(in_features=768, out_features=768, bias=True)
208
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
209
+ (dropout): Dropout(p=0.1, inplace=False)
210
+ )
211
+ )
212
+ (intermediate): RobertaIntermediate(
213
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
214
+ )
215
+ (output): RobertaOutput(
216
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
217
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
218
+ (dropout): Dropout(p=0.1, inplace=False)
219
+ )
220
+ )
221
+ (9): RobertaLayer(
222
+ (attention): RobertaAttention(
223
+ (self): RobertaSelfAttention(
224
+ (query): Linear(in_features=768, out_features=768, bias=True)
225
+ (key): Linear(in_features=768, out_features=768, bias=True)
226
+ (value): Linear(in_features=768, out_features=768, bias=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ (output): RobertaSelfOutput(
230
+ (dense): Linear(in_features=768, out_features=768, bias=True)
231
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
232
+ (dropout): Dropout(p=0.1, inplace=False)
233
+ )
234
+ )
235
+ (intermediate): RobertaIntermediate(
236
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
237
+ )
238
+ (output): RobertaOutput(
239
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (10): RobertaLayer(
245
+ (attention): RobertaAttention(
246
+ (self): RobertaSelfAttention(
247
+ (query): Linear(in_features=768, out_features=768, bias=True)
248
+ (key): Linear(in_features=768, out_features=768, bias=True)
249
+ (value): Linear(in_features=768, out_features=768, bias=True)
250
+ (dropout): Dropout(p=0.1, inplace=False)
251
+ )
252
+ (output): RobertaSelfOutput(
253
+ (dense): Linear(in_features=768, out_features=768, bias=True)
254
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
255
+ (dropout): Dropout(p=0.1, inplace=False)
256
+ )
257
+ )
258
+ (intermediate): RobertaIntermediate(
259
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
260
+ )
261
+ (output): RobertaOutput(
262
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
263
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
264
+ (dropout): Dropout(p=0.1, inplace=False)
265
+ )
266
+ )
267
+ (11): RobertaLayer(
268
+ (attention): RobertaAttention(
269
+ (self): RobertaSelfAttention(
270
+ (query): Linear(in_features=768, out_features=768, bias=True)
271
+ (key): Linear(in_features=768, out_features=768, bias=True)
272
+ (value): Linear(in_features=768, out_features=768, bias=True)
273
+ (dropout): Dropout(p=0.1, inplace=False)
274
+ )
275
+ (output): RobertaSelfOutput(
276
+ (dense): Linear(in_features=768, out_features=768, bias=True)
277
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
278
+ (dropout): Dropout(p=0.1, inplace=False)
279
+ )
280
+ )
281
+ (intermediate): RobertaIntermediate(
282
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
283
+ )
284
+ (output): RobertaOutput(
285
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
286
+ (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
287
+ (dropout): Dropout(p=0.1, inplace=False)
288
+ )
289
+ )
290
+ )
291
+ )
292
+ (pooler): RobertaPooler(
293
+ (dense): Linear(in_features=768, out_features=768, bias=True)
294
+ (activation): Tanh()
295
+ )
296
+ )
297
+ )
298
+ (word_dropout): WordDropout(p=0.05)
299
+ (locked_dropout): LockedDropout(p=0.5)
300
+ (linear): Linear(in_features=768, out_features=51, bias=True)
301
+ (beta): 1.0
302
+ (weights): None
303
+ (weight_tensor) None
304
+ )"
305
+ 2022-01-16 18:38:17,526 ----------------------------------------------------------------------------------------------------
306
+ 2022-01-16 18:38:17,526 Corpus: "Corpus: 5642 train + 195 dev + 649 test sentences"
307
+ 2022-01-16 18:38:17,526 ----------------------------------------------------------------------------------------------------
308
+ 2022-01-16 18:38:17,527 Parameters:
309
+ 2022-01-16 18:38:17,527 - learning_rate: "5e-06"
310
+ 2022-01-16 18:38:17,527 - mini_batch_size: "32"
311
+ 2022-01-16 18:38:17,527 - patience: "3"
312
+ 2022-01-16 18:38:17,528 - anneal_factor: "0.5"
313
+ 2022-01-16 18:38:17,528 - max_epochs: "10"
314
+ 2022-01-16 18:38:17,528 - shuffle: "True"
315
+ 2022-01-16 18:38:17,528 - train_with_dev: "False"
316
+ 2022-01-16 18:38:17,529 - batch_growth_annealing: "False"
317
+ 2022-01-16 18:38:17,529 ----------------------------------------------------------------------------------------------------
318
+ 2022-01-16 18:38:17,529 Model training base path: "resources/taggers/pos-transformer"
319
+ 2022-01-16 18:38:17,530 ----------------------------------------------------------------------------------------------------
320
+ 2022-01-16 18:38:17,530 Device: cuda:0
321
+ 2022-01-16 18:38:17,530 ----------------------------------------------------------------------------------------------------
322
+ 2022-01-16 18:38:17,530 Embeddings storage mode: none
323
+ 2022-01-16 18:38:17,534 ----------------------------------------------------------------------------------------------------
324
+ 2022-01-16 18:38:34,359 epoch 1 - iter 17/177 - loss 4.21719545 - samples/sec: 32.34 - lr: 0.000000
325
+ 2022-01-16 18:38:49,400 epoch 1 - iter 34/177 - loss 4.19345430 - samples/sec: 36.17 - lr: 0.000001
326
+ 2022-01-16 18:39:05,256 epoch 1 - iter 51/177 - loss 4.15633603 - samples/sec: 34.31 - lr: 0.000001
327
+ 2022-01-16 18:39:19,936 epoch 1 - iter 68/177 - loss 4.11811385 - samples/sec: 37.07 - lr: 0.000002
328
+ 2022-01-16 18:39:35,631 epoch 1 - iter 85/177 - loss 4.06705216 - samples/sec: 34.68 - lr: 0.000002
329
+ 2022-01-16 18:39:49,539 epoch 1 - iter 102/177 - loss 4.01162833 - samples/sec: 39.12 - lr: 0.000003
330
+ 2022-01-16 18:40:04,517 epoch 1 - iter 119/177 - loss 3.95117440 - samples/sec: 36.33 - lr: 0.000003
331
+ 2022-01-16 18:40:18,637 epoch 1 - iter 136/177 - loss 3.88391044 - samples/sec: 38.53 - lr: 0.000004
332
+ 2022-01-16 18:40:34,602 epoch 1 - iter 153/177 - loss 3.78662706 - samples/sec: 34.08 - lr: 0.000004
333
+ 2022-01-16 18:40:50,297 epoch 1 - iter 170/177 - loss 3.66565316 - samples/sec: 34.67 - lr: 0.000005
334
+ 2022-01-16 18:40:55,405 ----------------------------------------------------------------------------------------------------
335
+ 2022-01-16 18:40:55,406 EPOCH 1 done: loss 3.6331 - lr 0.0000050
336
+ 2022-01-16 18:41:01,071 DEV : loss 2.0775277614593506 - f1-score (micro avg) 0.5698
337
+ 2022-01-16 18:41:01,073 BAD EPOCHS (no improvement): 4
338
+ 2022-01-16 18:41:01,075 ----------------------------------------------------------------------------------------------------
339
+ 2022-01-16 18:41:14,873 epoch 2 - iter 17/177 - loss 2.20805337 - samples/sec: 39.44 - lr: 0.000005
340
+ 2022-01-16 18:41:29,867 epoch 2 - iter 34/177 - loss 1.96658974 - samples/sec: 36.29 - lr: 0.000005
341
+ 2022-01-16 18:41:45,607 epoch 2 - iter 51/177 - loss 1.75508128 - samples/sec: 34.57 - lr: 0.000005
342
+ 2022-01-16 18:42:01,386 epoch 2 - iter 68/177 - loss 1.58575541 - samples/sec: 34.48 - lr: 0.000005
343
+ 2022-01-16 18:42:16,804 epoch 2 - iter 85/177 - loss 1.45429547 - samples/sec: 35.29 - lr: 0.000005
344
+ 2022-01-16 18:42:32,178 epoch 2 - iter 102/177 - loss 1.34526502 - samples/sec: 35.39 - lr: 0.000005
345
+ 2022-01-16 18:42:48,735 epoch 2 - iter 119/177 - loss 1.23724431 - samples/sec: 32.86 - lr: 0.000005
346
+ 2022-01-16 18:43:03,310 epoch 2 - iter 136/177 - loss 1.16223838 - samples/sec: 37.33 - lr: 0.000005
347
+ 2022-01-16 18:43:18,304 epoch 2 - iter 153/177 - loss 1.09870495 - samples/sec: 36.29 - lr: 0.000005
348
+ 2022-01-16 18:43:34,956 epoch 2 - iter 170/177 - loss 1.03855466 - samples/sec: 32.67 - lr: 0.000004
349
+ 2022-01-16 18:43:40,722 ----------------------------------------------------------------------------------------------------
350
+ 2022-01-16 18:43:40,723 EPOCH 2 done: loss 1.0198 - lr 0.0000044
351
+ 2022-01-16 18:43:46,405 DEV : loss 0.23464356362819672 - f1-score (micro avg) 0.9443
352
+ 2022-01-16 18:43:46,407 BAD EPOCHS (no improvement): 4
353
+ 2022-01-16 18:43:46,408 ----------------------------------------------------------------------------------------------------
354
+ 2022-01-16 18:44:01,387 epoch 3 - iter 17/177 - loss 0.46476740 - samples/sec: 36.33 - lr: 0.000004
355
+ 2022-01-16 18:44:17,394 epoch 3 - iter 34/177 - loss 0.46233323 - samples/sec: 33.99 - lr: 0.000004
356
+ 2022-01-16 18:44:32,304 epoch 3 - iter 51/177 - loss 0.45235428 - samples/sec: 36.49 - lr: 0.000004
357
+ 2022-01-16 18:44:46,826 epoch 3 - iter 68/177 - loss 0.44547326 - samples/sec: 37.47 - lr: 0.000004
358
+ 2022-01-16 18:45:03,857 epoch 3 - iter 85/177 - loss 0.43503033 - samples/sec: 31.95 - lr: 0.000004
359
+ 2022-01-16 18:45:20,043 epoch 3 - iter 102/177 - loss 0.42734805 - samples/sec: 33.63 - lr: 0.000004
360
+ 2022-01-16 18:45:36,060 epoch 3 - iter 119/177 - loss 0.42237100 - samples/sec: 33.97 - lr: 0.000004
361
+ 2022-01-16 18:45:51,576 epoch 3 - iter 136/177 - loss 0.41700412 - samples/sec: 35.07 - lr: 0.000004
362
+ 2022-01-16 18:46:07,252 epoch 3 - iter 153/177 - loss 0.41455352 - samples/sec: 34.71 - lr: 0.000004
363
+ 2022-01-16 18:46:23,597 epoch 3 - iter 170/177 - loss 0.41134424 - samples/sec: 33.29 - lr: 0.000004
364
+ 2022-01-16 18:46:29,222 ----------------------------------------------------------------------------------------------------
365
+ 2022-01-16 18:46:29,223 EPOCH 3 done: loss 0.4103 - lr 0.0000039
366
+ 2022-01-16 18:46:34,899 DEV : loss 0.140821173787117 - f1-score (micro avg) 0.9632
367
+ 2022-01-16 18:46:34,901 BAD EPOCHS (no improvement): 4
368
+ 2022-01-16 18:46:34,902 ----------------------------------------------------------------------------------------------------
369
+ 2022-01-16 18:46:49,649 epoch 4 - iter 17/177 - loss 0.34770276 - samples/sec: 36.90 - lr: 0.000004
370
+ 2022-01-16 18:47:05,137 epoch 4 - iter 34/177 - loss 0.34449519 - samples/sec: 35.13 - lr: 0.000004
371
+ 2022-01-16 18:47:20,666 epoch 4 - iter 51/177 - loss 0.35038471 - samples/sec: 35.04 - lr: 0.000004
372
+ 2022-01-16 18:47:35,593 epoch 4 - iter 68/177 - loss 0.34965167 - samples/sec: 36.45 - lr: 0.000004
373
+ 2022-01-16 18:47:51,537 epoch 4 - iter 85/177 - loss 0.35074386 - samples/sec: 34.13 - lr: 0.000004
374
+ 2022-01-16 18:48:06,575 epoch 4 - iter 102/177 - loss 0.34919573 - samples/sec: 36.18 - lr: 0.000004
375
+ 2022-01-16 18:48:22,671 epoch 4 - iter 119/177 - loss 0.34906482 - samples/sec: 33.80 - lr: 0.000004
376
+ 2022-01-16 18:48:38,152 epoch 4 - iter 136/177 - loss 0.34645574 - samples/sec: 35.15 - lr: 0.000003
377
+ 2022-01-16 18:48:53,425 epoch 4 - iter 153/177 - loss 0.34515747 - samples/sec: 35.63 - lr: 0.000003
378
+ 2022-01-16 18:49:08,614 epoch 4 - iter 170/177 - loss 0.34411478 - samples/sec: 35.82 - lr: 0.000003
379
+ 2022-01-16 18:49:14,556 ----------------------------------------------------------------------------------------------------
380
+ 2022-01-16 18:49:14,557 EPOCH 4 done: loss 0.3430 - lr 0.0000033
381
+ 2022-01-16 18:49:20,294 DEV : loss 0.11640190333127975 - f1-score (micro avg) 0.9703
382
+ 2022-01-16 18:49:20,297 BAD EPOCHS (no improvement): 4
383
+ 2022-01-16 18:49:20,297 ----------------------------------------------------------------------------------------------------
384
+ 2022-01-16 18:49:36,057 epoch 5 - iter 17/177 - loss 0.31027747 - samples/sec: 34.53 - lr: 0.000003
385
+ 2022-01-16 18:49:51,823 epoch 5 - iter 34/177 - loss 0.31176440 - samples/sec: 34.51 - lr: 0.000003
386
+ 2022-01-16 18:50:06,630 epoch 5 - iter 51/177 - loss 0.31452075 - samples/sec: 36.75 - lr: 0.000003
387
+ 2022-01-16 18:50:22,294 epoch 5 - iter 68/177 - loss 0.31209996 - samples/sec: 34.73 - lr: 0.000003
388
+ 2022-01-16 18:50:36,301 epoch 5 - iter 85/177 - loss 0.31357991 - samples/sec: 38.85 - lr: 0.000003
389
+ 2022-01-16 18:50:52,962 epoch 5 - iter 102/177 - loss 0.31496866 - samples/sec: 32.66 - lr: 0.000003
390
+ 2022-01-16 18:51:08,260 epoch 5 - iter 119/177 - loss 0.31294977 - samples/sec: 35.57 - lr: 0.000003
391
+ 2022-01-16 18:51:24,158 epoch 5 - iter 136/177 - loss 0.31189665 - samples/sec: 34.22 - lr: 0.000003
392
+ 2022-01-16 18:51:39,145 epoch 5 - iter 153/177 - loss 0.31138881 - samples/sec: 36.31 - lr: 0.000003
393
+ 2022-01-16 18:51:54,700 epoch 5 - iter 170/177 - loss 0.30960234 - samples/sec: 34.98 - lr: 0.000003
394
+ 2022-01-16 18:51:59,742 ----------------------------------------------------------------------------------------------------
395
+ 2022-01-16 18:51:59,743 EPOCH 5 done: loss 0.3098 - lr 0.0000028
396
+ 2022-01-16 18:52:05,466 DEV : loss 0.10135460644960403 - f1-score (micro avg) 0.9729
397
+ 2022-01-16 18:52:05,468 BAD EPOCHS (no improvement): 4
398
+ 2022-01-16 18:52:05,469 ----------------------------------------------------------------------------------------------------
399
+ 2022-01-16 18:52:20,458 epoch 6 - iter 17/177 - loss 0.30154787 - samples/sec: 36.30 - lr: 0.000003
400
+ 2022-01-16 18:52:34,917 epoch 6 - iter 34/177 - loss 0.30197436 - samples/sec: 37.63 - lr: 0.000003
401
+ 2022-01-16 18:52:49,618 epoch 6 - iter 51/177 - loss 0.30167136 - samples/sec: 37.01 - lr: 0.000003
402
+ 2022-01-16 18:53:04,988 epoch 6 - iter 68/177 - loss 0.30196611 - samples/sec: 35.40 - lr: 0.000003
403
+ 2022-01-16 18:53:20,297 epoch 6 - iter 85/177 - loss 0.30182940 - samples/sec: 35.54 - lr: 0.000003
404
+ 2022-01-16 18:53:35,734 epoch 6 - iter 102/177 - loss 0.30003109 - samples/sec: 35.25 - lr: 0.000002
405
+ 2022-01-16 18:53:51,701 epoch 6 - iter 119/177 - loss 0.30091205 - samples/sec: 34.08 - lr: 0.000002
406
+ 2022-01-16 18:54:06,831 epoch 6 - iter 136/177 - loss 0.30099483 - samples/sec: 35.96 - lr: 0.000002
407
+ 2022-01-16 18:54:22,486 epoch 6 - iter 153/177 - loss 0.29848715 - samples/sec: 34.76 - lr: 0.000002
408
+ 2022-01-16 18:54:37,203 epoch 6 - iter 170/177 - loss 0.29689481 - samples/sec: 36.97 - lr: 0.000002
409
+ 2022-01-16 18:54:44,337 ----------------------------------------------------------------------------------------------------
410
+ 2022-01-16 18:54:44,338 EPOCH 6 done: loss 0.2966 - lr 0.0000022
411
+ 2022-01-16 18:54:49,620 DEV : loss 0.09480294585227966 - f1-score (micro avg) 0.974
412
+ 2022-01-16 18:54:49,623 BAD EPOCHS (no improvement): 4
413
+ 2022-01-16 18:54:49,623 ----------------------------------------------------------------------------------------------------
414
+ 2022-01-16 18:55:05,515 epoch 7 - iter 17/177 - loss 0.28239213 - samples/sec: 34.24 - lr: 0.000002
415
+ 2022-01-16 18:55:20,295 epoch 7 - iter 34/177 - loss 0.28557506 - samples/sec: 36.81 - lr: 0.000002
416
+ 2022-01-16 18:55:35,660 epoch 7 - iter 51/177 - loss 0.28541785 - samples/sec: 35.41 - lr: 0.000002
417
+ 2022-01-16 18:55:51,758 epoch 7 - iter 68/177 - loss 0.29320767 - samples/sec: 33.80 - lr: 0.000002
418
+ 2022-01-16 18:56:06,783 epoch 7 - iter 85/177 - loss 0.29339894 - samples/sec: 36.21 - lr: 0.000002
419
+ 2022-01-16 18:56:22,815 epoch 7 - iter 102/177 - loss 0.29253486 - samples/sec: 33.94 - lr: 0.000002
420
+ 2022-01-16 18:56:39,028 epoch 7 - iter 119/177 - loss 0.29145637 - samples/sec: 33.56 - lr: 0.000002
421
+ 2022-01-16 18:56:54,361 epoch 7 - iter 136/177 - loss 0.29111952 - samples/sec: 35.49 - lr: 0.000002
422
+ 2022-01-16 18:57:09,548 epoch 7 - iter 153/177 - loss 0.29113036 - samples/sec: 35.83 - lr: 0.000002
423
+ 2022-01-16 18:57:23,584 epoch 7 - iter 170/177 - loss 0.29066532 - samples/sec: 38.76 - lr: 0.000002
424
+ 2022-01-16 18:57:29,584 ----------------------------------------------------------------------------------------------------
425
+ 2022-01-16 18:57:29,585 EPOCH 7 done: loss 0.2896 - lr 0.0000017
426
+ 2022-01-16 18:57:34,894 DEV : loss 0.09033482521772385 - f1-score (micro avg) 0.9743
427
+ 2022-01-16 18:57:34,896 BAD EPOCHS (no improvement): 4
428
+ 2022-01-16 18:57:34,898 ----------------------------------------------------------------------------------------------------
429
+ 2022-01-16 18:57:50,623 epoch 8 - iter 17/177 - loss 0.28329047 - samples/sec: 34.60 - lr: 0.000002
430
+ 2022-01-16 18:58:06,213 epoch 8 - iter 34/177 - loss 0.28096448 - samples/sec: 34.90 - lr: 0.000002
431
+ 2022-01-16 18:58:22,737 epoch 8 - iter 51/177 - loss 0.28201738 - samples/sec: 32.93 - lr: 0.000002
432
+ 2022-01-16 18:58:37,507 epoch 8 - iter 68/177 - loss 0.28137267 - samples/sec: 36.84 - lr: 0.000001
433
+ 2022-01-16 18:58:52,962 epoch 8 - iter 85/177 - loss 0.28405564 - samples/sec: 35.21 - lr: 0.000001
434
+ 2022-01-16 18:59:08,711 epoch 8 - iter 102/177 - loss 0.28496531 - samples/sec: 34.55 - lr: 0.000001
435
+ 2022-01-16 18:59:23,238 epoch 8 - iter 119/177 - loss 0.28466528 - samples/sec: 37.46 - lr: 0.000001
436
+ 2022-01-16 18:59:38,520 epoch 8 - iter 136/177 - loss 0.28246598 - samples/sec: 35.60 - lr: 0.000001
437
+ 2022-01-16 18:59:53,789 epoch 8 - iter 153/177 - loss 0.28078088 - samples/sec: 35.63 - lr: 0.000001
438
+ 2022-01-16 19:00:09,934 epoch 8 - iter 170/177 - loss 0.28075535 - samples/sec: 33.70 - lr: 0.000001
439
+ 2022-01-16 19:00:15,100 ----------------------------------------------------------------------------------------------------
440
+ 2022-01-16 19:00:15,101 EPOCH 8 done: loss 0.2814 - lr 0.0000011
441
+ 2022-01-16 19:00:20,403 DEV : loss 0.08581043034791946 - f1-score (micro avg) 0.9745
442
+ 2022-01-16 19:00:20,406 BAD EPOCHS (no improvement): 4
443
+ 2022-01-16 19:00:20,406 ----------------------------------------------------------------------------------------------------
444
+ 2022-01-16 19:00:36,469 epoch 9 - iter 17/177 - loss 0.27366042 - samples/sec: 33.87 - lr: 0.000001
445
+ 2022-01-16 19:00:51,042 epoch 9 - iter 34/177 - loss 0.27417563 - samples/sec: 37.34 - lr: 0.000001
446
+ 2022-01-16 19:01:06,968 epoch 9 - iter 51/177 - loss 0.27908066 - samples/sec: 34.16 - lr: 0.000001
447
+ 2022-01-16 19:01:21,551 epoch 9 - iter 68/177 - loss 0.27815091 - samples/sec: 37.31 - lr: 0.000001
448
+ 2022-01-16 19:01:38,409 epoch 9 - iter 85/177 - loss 0.27855783 - samples/sec: 32.28 - lr: 0.000001
449
+ 2022-01-16 19:01:53,547 epoch 9 - iter 102/177 - loss 0.28336618 - samples/sec: 35.94 - lr: 0.000001
450
+ 2022-01-16 19:02:09,188 epoch 9 - iter 119/177 - loss 0.28196400 - samples/sec: 34.79 - lr: 0.000001
451
+ 2022-01-16 19:02:25,112 epoch 9 - iter 136/177 - loss 0.28112997 - samples/sec: 34.17 - lr: 0.000001
452
+ 2022-01-16 19:02:41,122 epoch 9 - iter 153/177 - loss 0.28271008 - samples/sec: 33.99 - lr: 0.000001
453
+ 2022-01-16 19:02:57,003 epoch 9 - iter 170/177 - loss 0.28254205 - samples/sec: 34.26 - lr: 0.000001
454
+ 2022-01-16 19:03:02,602 ----------------------------------------------------------------------------------------------------
455
+ 2022-01-16 19:03:02,603 EPOCH 9 done: loss 0.2826 - lr 0.0000006
456
+ 2022-01-16 19:03:08,344 DEV : loss 0.08502506464719772 - f1-score (micro avg) 0.974
457
+ 2022-01-16 19:03:08,347 BAD EPOCHS (no improvement): 4
458
+ 2022-01-16 19:03:08,348 ----------------------------------------------------------------------------------------------------
459
+ 2022-01-16 19:03:22,683 epoch 10 - iter 17/177 - loss 0.29810598 - samples/sec: 37.96 - lr: 0.000001
460
+ 2022-01-16 19:03:38,044 epoch 10 - iter 34/177 - loss 0.29633129 - samples/sec: 35.42 - lr: 0.000000
461
+ 2022-01-16 19:03:54,399 epoch 10 - iter 51/177 - loss 0.28500408 - samples/sec: 33.27 - lr: 0.000000
462
+ 2022-01-16 19:04:09,802 epoch 10 - iter 68/177 - loss 0.28305573 - samples/sec: 35.32 - lr: 0.000000
463
+ 2022-01-16 19:04:25,641 epoch 10 - iter 85/177 - loss 0.28663575 - samples/sec: 34.35 - lr: 0.000000
464
+ 2022-01-16 19:04:40,354 epoch 10 - iter 102/177 - loss 0.28653115 - samples/sec: 36.98 - lr: 0.000000
465
+ 2022-01-16 19:04:56,702 epoch 10 - iter 119/177 - loss 0.28579694 - samples/sec: 33.28 - lr: 0.000000
466
+ 2022-01-16 19:05:12,070 epoch 10 - iter 136/177 - loss 0.28590446 - samples/sec: 35.40 - lr: 0.000000
467
+ 2022-01-16 19:05:27,377 epoch 10 - iter 153/177 - loss 0.28533742 - samples/sec: 35.55 - lr: 0.000000
468
+ 2022-01-16 19:05:42,603 epoch 10 - iter 170/177 - loss 0.28333786 - samples/sec: 35.73 - lr: 0.000000
469
+ 2022-01-16 19:05:48,443 ----------------------------------------------------------------------------------------------------
470
+ 2022-01-16 19:05:48,444 EPOCH 10 done: loss 0.2832 - lr 0.0000000
471
+ 2022-01-16 19:05:54,211 DEV : loss 0.08448906987905502 - f1-score (micro avg) 0.974
472
+ 2022-01-16 19:05:54,214 BAD EPOCHS (no improvement): 4
473
+ 2022-01-16 19:05:55,439 ----------------------------------------------------------------------------------------------------
474
+ 2022-01-16 19:05:55,440 Testing using last state of model ...
475
+ 2022-01-16 19:06:15,179 0.9788 0.9788 0.9788 0.9788
476
+ 2022-01-16 19:06:15,180
477
+ Results:
478
+ - F-score (micro) 0.9788
479
+ - F-score (macro) 0.7527
480
+ - Accuracy 0.9788
481
+
482
+ By class:
483
+ precision recall f1-score support
484
+
485
+ NOMcom 0.9850 0.9840 0.9845 2130
486
+ VERcjg 0.9974 0.9954 0.9964 1535
487
+ PROper 0.9912 0.9920 0.9916 1368
488
+ PONfbl 1.0000 0.9993 0.9996 1341
489
+ PRE 0.9881 0.9955 0.9918 1331
490
+ ADVgen 0.9713 0.9263 0.9483 841
491
+ PONfrt 0.9895 1.0000 0.9947 662
492
+ DETdef 0.9983 0.9983 0.9983 606
493
+ ADJqua 0.9259 0.9500 0.9378 500
494
+ VERinf 0.9920 1.0000 0.9960 497
495
+ DETpos 1.0000 0.9957 0.9979 469
496
+ CONcoo 0.9957 0.9935 0.9946 465
497
+ CONsub 0.9337 0.9409 0.9373 389
498
+ VERppe 0.9659 0.9720 0.9689 321
499
+ ADVneg 0.9476 1.0000 0.9731 271
500
+ PROrel 0.9194 0.9296 0.9245 270
501
+ NOMpro 0.9634 0.9925 0.9777 265
502
+ DETndf 0.9958 0.9715 0.9835 246
503
+ PROind 0.9526 0.9628 0.9577 188
504
+ PRE.DETdef 0.9785 0.9945 0.9864 183
505
+ DETdem 1.0000 0.9806 0.9902 155
506
+ PROdem 0.9675 1.0000 0.9835 119
507
+ PROadv 0.9083 0.9820 0.9437 111
508
+ DETind 0.9223 0.9694 0.9453 98
509
+ VERppa 0.9683 0.9104 0.9385 67
510
+ PROimp 0.8333 0.8333 0.8333 54
511
+ DETcar 0.7381 1.0000 0.8493 31
512
+ INJ 1.0000 0.8571 0.9231 35
513
+ ADJind 0.9310 0.9000 0.9153 30
514
+ PROint 0.6957 0.7273 0.7111 22
515
+ ADJcar 0.8333 0.4762 0.6061 21
516
+ PROcar 0.7333 0.6111 0.6667 18
517
+ PONpga 1.0000 1.0000 1.0000 16
518
+ PROpos 0.9231 0.8571 0.8889 14
519
+ DETrel 0.6364 0.4375 0.5185 16
520
+ DETint 0.4706 0.8000 0.5926 10
521
+ PONpdr 1.0000 1.0000 1.0000 13
522
+ ADJord 0.8889 0.5000 0.6400 16
523
+ ADVint 1.0000 0.8000 0.8889 5
524
+ PONpxx 0.0000 0.0000 0.0000 6
525
+ PRE.PROrel 0.0000 0.0000 0.0000 2
526
+ latin 0.0000 0.0000 0.0000 2
527
+ PROord 0.0000 0.0000 0.0000 1
528
+ PRE.PROdem 0.0000 0.0000 0.0000 1
529
+ PRE.NOMcom 0.0000 0.0000 0.0000 1
530
+ ETR 0.0000 0.0000 0.0000 1
531
+ ADVsub 0.0000 0.0000 0.0000 1
532
+
533
+ micro avg 0.9788 0.9788 0.9788 14744
534
+ macro avg 0.7647 0.7497 0.7527 14744
535
+ weighted avg 0.9781 0.9788 0.9782 14744
536
+ samples avg 0.9788 0.9788 0.9788 14744
537
+
538
+ 2022-01-16 19:06:15,180 ----------------------------------------------------------------------------------------------------
weights.txt ADDED
File without changes