yano0 commited on
Commit
9221208
1 Parent(s): e73fded

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ base_model: yano0/my_rope_bert_v2
9
+ metrics:
10
+ - pearson_cosine
11
+ - spearman_cosine
12
+ - pearson_manhattan
13
+ - spearman_manhattan
14
+ - pearson_euclidean
15
+ - spearman_euclidean
16
+ - pearson_dot
17
+ - spearman_dot
18
+ - pearson_max
19
+ - spearman_max
20
+ widget: []
21
+ pipeline_tag: sentence-similarity
22
+ model-index:
23
+ - name: SentenceTransformer based on yano0/my_rope_bert_v2
24
+ results:
25
+ - task:
26
+ type: semantic-similarity
27
+ name: Semantic Similarity
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ metrics:
32
+ - type: pearson_cosine
33
+ value: 0.8363388345473755
34
+ name: Pearson Cosine
35
+ - type: spearman_cosine
36
+ value: 0.7829140815230603
37
+ name: Spearman Cosine
38
+ - type: pearson_manhattan
39
+ value: 0.8169134821588451
40
+ name: Pearson Manhattan
41
+ - type: spearman_manhattan
42
+ value: 0.7806182228552376
43
+ name: Spearman Manhattan
44
+ - type: pearson_euclidean
45
+ value: 0.8176194153920942
46
+ name: Pearson Euclidean
47
+ - type: spearman_euclidean
48
+ value: 0.7812646926795144
49
+ name: Spearman Euclidean
50
+ - type: pearson_dot
51
+ value: 0.790584312051173
52
+ name: Pearson Dot
53
+ - type: spearman_dot
54
+ value: 0.7341313863604967
55
+ name: Spearman Dot
56
+ - type: pearson_max
57
+ value: 0.8363388345473755
58
+ name: Pearson Max
59
+ - type: spearman_max
60
+ value: 0.7829140815230603
61
+ name: Spearman Max
62
+ ---
63
+
64
+ # SentenceTransformer based on yano0/my_rope_bert_v2
65
+
66
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
67
+
68
+ ## Model Details
69
+
70
+ ### Model Description
71
+ - **Model Type:** Sentence Transformer
72
+ - **Base model:** [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2) <!-- at revision a392086c08b3bf3a9b9030267a8965af0552d7fb -->
73
+ - **Maximum Sequence Length:** 1024 tokens
74
+ - **Output Dimensionality:** 768 tokens
75
+ - **Similarity Function:** Cosine Similarity
76
+ <!-- - **Training Dataset:** Unknown -->
77
+ <!-- - **Language:** Unknown -->
78
+ <!-- - **License:** Unknown -->
79
+
80
+ ### Model Sources
81
+
82
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
83
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
84
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
85
+
86
+ ### Full Model Architecture
87
+
88
+ ```
89
+ SentenceTransformer(
90
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel
91
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
92
+ )
93
+ ```
94
+
95
+ ## Usage
96
+
97
+ ### Direct Usage (Sentence Transformers)
98
+
99
+ First install the Sentence Transformers library:
100
+
101
+ ```bash
102
+ pip install -U sentence-transformers
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+ ```python
107
+ from sentence_transformers import SentenceTransformer
108
+
109
+ # Download from the 🤗 Hub
110
+ model = SentenceTransformer("pkshatech/RoSEtta-base")
111
+ # Run inference
112
+ sentences = [
113
+ 'The weather is lovely today.',
114
+ "It's so sunny outside!",
115
+ 'He drove to the stadium.',
116
+ ]
117
+ embeddings = model.encode(sentences)
118
+ print(embeddings.shape)
119
+ # [3, 768]
120
+
121
+ # Get the similarity scores for the embeddings
122
+ similarities = model.similarity(embeddings, embeddings)
123
+ print(similarities.shape)
124
+ # [3, 3]
125
+ ```
126
+
127
+ <!--
128
+ ### Direct Usage (Transformers)
129
+
130
+ <details><summary>Click to see the direct usage in Transformers</summary>
131
+
132
+ </details>
133
+ -->
134
+
135
+ <!--
136
+ ### Downstream Usage (Sentence Transformers)
137
+
138
+ You can finetune this model on your own dataset.
139
+
140
+ <details><summary>Click to expand</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Out-of-Scope Use
147
+
148
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
149
+ -->
150
+
151
+ ## Evaluation
152
+
153
+ ### Metrics
154
+
155
+ #### Semantic Similarity
156
+
157
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
158
+
159
+ | Metric | Value |
160
+ |:--------------------|:-----------|
161
+ | pearson_cosine | 0.8363 |
162
+ | **spearman_cosine** | **0.7829** |
163
+ | pearson_manhattan | 0.8169 |
164
+ | spearman_manhattan | 0.7806 |
165
+ | pearson_euclidean | 0.8176 |
166
+ | spearman_euclidean | 0.7813 |
167
+ | pearson_dot | 0.7906 |
168
+ | spearman_dot | 0.7341 |
169
+ | pearson_max | 0.8363 |
170
+ | spearman_max | 0.7829 |
171
+
172
+ <!--
173
+ ## Bias, Risks and Limitations
174
+
175
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
176
+ -->
177
+
178
+ <!--
179
+ ### Recommendations
180
+
181
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
182
+ -->
183
+
184
+ ## Training Details
185
+
186
+ ### Training Logs
187
+ | Epoch | Step | spearman_cosine |
188
+ |:-----:|:----:|:---------------:|
189
+ | 0 | 0 | 0.7829 |
190
+
191
+
192
+ ### Framework Versions
193
+ - Python: 3.10.13
194
+ - Sentence Transformers: 3.0.0
195
+ - Transformers: 4.44.0
196
+ - PyTorch: 2.3.1+cu118
197
+ - Accelerate: 0.30.1
198
+ - Datasets: 2.19.2
199
+ - Tokenizers: 0.19.1
200
+
201
+ ## Citation
202
+
203
+ ### BibTeX
204
+
205
+ <!--
206
+ ## Glossary
207
+
208
+ *Clearly define terms in order to be accessible across audiences.*
209
+ -->
210
+
211
+ <!--
212
+ ## Model Card Authors
213
+
214
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
215
+ -->
216
+
217
+ <!--
218
+ ## Model Card Contact
219
+
220
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
221
+ -->
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/store/outputs/step3/B2048E3LR3e-05_big-prefix/B2048E3LR3e-05_mir_mr-_jqa_bao_qui_qui_mqa-prefix/93",
3
+ "architectures": [
4
+ "RetrievaBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_retrieva_bert.RetrievaBertConfig",
9
+ "AutoModel": "retrieva_modeling.RetrievaBertModel"
10
+ },
11
+ "hidden_act": "silu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-12,
17
+ "lm_head_hidden_act": "gelu",
18
+ "max_position_embeddings": 1024,
19
+ "mlp_bias": false,
20
+ "model_type": "retrieva-bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "num_key_value_heads": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "rope",
26
+ "rope_theta": 10000.0,
27
+ "rotary_percent": 1.0,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.44.0",
30
+ "type_vocab_size": 0,
31
+ "use_cache": true,
32
+ "vocab_size": 99584
33
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.3.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
configuration_retrieva_bert.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """RetrievaBERT model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class RetrievaBertConfig(PretrainedConfig):
25
+ r"""
26
+ This is the configuration class to store the configuration of a [`RetrievaBertModel`]. It is used to instantiate a
27
+ RETRIEVA_BERT model according to the specified arguments, defining the model architecture. Instantiating a
28
+ configuration with the defaults will yield a similar configuration to that of the RETRIEVA_BERT
29
+ [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture.
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+ Args:
33
+ vocab_size (`int`, *optional*, defaults to 29056):
34
+ Vocabulary size of the RETRIEVA_BERT model. Defines the number of different tokens that can be represented
35
+ by the `inputs_ids` passed when calling [`RetrievaBertModel`].
36
+ hidden_size (`int`, *optional*, defaults to 1024):
37
+ Dimensionality of the encoder layers and the pooler layer.
38
+ num_hidden_layers (`int`, *optional*, defaults to 24):
39
+ Number of hidden layers in the Transformer encoder.
40
+ num_attention_heads (`int`, *optional*, defaults to 16):
41
+ Number of attention heads for each attention layer in the Transformer encoder.
42
+ intermediate_size (`int`, *optional*, defaults to 4096):
43
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
44
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
47
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
48
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
49
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
50
+ The dropout ratio for the attention probabilities.
51
+ max_position_embeddings (`int`, *optional*, defaults to 512):
52
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
53
+ just in case (e.g., 512 or 1024 or 2048).
54
+ type_vocab_size (`int`, *optional*, defaults to 2):
55
+ The vocabulary size of the `token_type_ids` passed when calling [`RetrievaBertModel`].
56
+ If set 0, `token_type_ids` is not used.
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the layer normalization layers.
61
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
62
+ Type of position embedding. Choose one of `"absolute"`, `"rope"`. For
63
+ positional embeddings use `"absolute"`.
64
+ is_decoder (`bool`, *optional*, defaults to `False`):
65
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ Examples:
70
+ ```python
71
+ >>> from models import RetrievaBertConfig, RetrievaBertModel
72
+ >>> # Initializing a RETRIEVA_BERT google-bert/bert-base-uncased style configuration
73
+ >>> configuration = RetrievaBertConfig()
74
+ >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
75
+ >>> model = RetrievaBertModel(configuration)
76
+ >>> # Accessing the model configuration
77
+ >>> configuration = model.config
78
+ ```"""
79
+
80
+ model_type = "retrieva-bert"
81
+
82
+ def __init__(
83
+ self,
84
+ vocab_size=99584,
85
+ hidden_size=768,
86
+ num_hidden_layers=12,
87
+ num_attention_heads=12,
88
+ intermediate_size=3072,
89
+ hidden_act="silu",
90
+ hidden_dropout_prob=0.1,
91
+ attention_probs_dropout_prob=0.1,
92
+ max_position_embeddings=1024,
93
+ type_vocab_size=0,
94
+ initializer_range=0.02,
95
+ layer_norm_eps=1e-12,
96
+ pad_token_id=0,
97
+ position_embedding_type="rope",
98
+ use_cache=True,
99
+ rope_theta=10000.0,
100
+ rotary_percent=1.0,
101
+ mlp_bias=False,
102
+ num_key_value_heads=None,
103
+ lm_head_hidden_act="gelu",
104
+ **kwargs,
105
+ ):
106
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
107
+
108
+ self.vocab_size = vocab_size
109
+ self.hidden_size = hidden_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.hidden_act = hidden_act
113
+ self.intermediate_size = intermediate_size
114
+ self.hidden_dropout_prob = hidden_dropout_prob
115
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
116
+ self.max_position_embeddings = max_position_embeddings
117
+ self.type_vocab_size = type_vocab_size
118
+ self.initializer_range = initializer_range
119
+ self.layer_norm_eps = layer_norm_eps
120
+ self.position_embedding_type = position_embedding_type
121
+ self.use_cache = use_cache
122
+ self.rope_theta = rope_theta
123
+ self.rotary_percent = rotary_percent
124
+ self.mlp_bias = mlp_bias
125
+
126
+ if num_key_value_heads is None:
127
+ num_key_value_heads = num_attention_heads
128
+ self.num_key_value_heads = num_key_value_heads
129
+ self.lm_head_hidden_act = lm_head_hidden_act
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e0232fa4ea89bb96d318292133c725d7ab0616843bbbc8cb351cc37c64a282
3
+ size 761590704
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
retrieva_modeling.py ADDED
@@ -0,0 +1,1515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch RetrievaBERT model.
17
+ The follwoing are the differences of the original huffingface/MegatronBERT model.
18
+ - Use RoPE instead of absolute position embeddings.
19
+ - Use Grouped Query Attention (GQA) instead of the standard self-attention.
20
+ - Use Swiglu activation function instead of GELU.
21
+ RoPE implementation is based on the huggingface's Llama and RoFormer model.
22
+ GQA/Swiglu implementation is based on the Llama model.
23
+ https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
24
+ https://github.com/huggingface/transformers/blob/main/src/transformers/models/roformer/modeling_roformer.py
25
+ """
26
+
27
+ import math
28
+ import os
29
+ import warnings
30
+ from dataclasses import dataclass
31
+ from typing import Optional, Tuple, Union
32
+
33
+ import torch
34
+ import torch.utils.checkpoint
35
+ from torch import nn
36
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
37
+
38
+ from transformers.activations import ACT2FN
39
+ from transformers.modeling_outputs import (
40
+ BaseModelOutputWithPastAndCrossAttentions,
41
+ BaseModelOutputWithPoolingAndCrossAttentions,
42
+ CausalLMOutputWithCrossAttentions,
43
+ MaskedLMOutput,
44
+ MultipleChoiceModelOutput,
45
+ NextSentencePredictorOutput,
46
+ QuestionAnsweringModelOutput,
47
+ SequenceClassifierOutput,
48
+ TokenClassifierOutput,
49
+ )
50
+ from transformers.modeling_utils import PreTrainedModel
51
+ from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
52
+ from transformers.utils import (
53
+ ModelOutput,
54
+ add_code_sample_docstrings,
55
+ add_start_docstrings,
56
+ add_start_docstrings_to_model_forward,
57
+ logging,
58
+ replace_return_docstrings,
59
+ )
60
+ from .configuration_retrieva_bert import RetrievaBertConfig
61
+
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+ _CONFIG_FOR_DOC = "RetrievaBertConfig"
66
+ _CHECKPOINT_FOR_DOC = "retrieva-jp/bert-1.3b"
67
+
68
+
69
+ def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path):
70
+ """Load tf checkpoints in a pytorch model."""
71
+ try:
72
+ import re
73
+
74
+ import numpy as np
75
+ import tensorflow as tf
76
+ except ImportError:
77
+ logger.error(
78
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
79
+ "https://www.tensorflow.org/install/ for installation instructions."
80
+ )
81
+ raise
82
+ tf_path = os.path.abspath(tf_checkpoint_path)
83
+ logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
84
+ # Load weights from TF model
85
+ init_vars = tf.train.list_variables(tf_path)
86
+ names = []
87
+ arrays = []
88
+ for name, shape in init_vars:
89
+ logger.info(f"Loading TF weight {name} with shape {shape}")
90
+ array = tf.train.load_variable(tf_path, name)
91
+ names.append(name)
92
+ arrays.append(array)
93
+
94
+ for name, array in zip(names, arrays):
95
+ name = name.split("/")
96
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
97
+ # which are not required for using pretrained model
98
+ if any(n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name):
99
+ logger.info(f"Skipping {'/'.join(name)}")
100
+ continue
101
+ pointer = model
102
+ for m_name in name:
103
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
104
+ scope_names = re.split(r"_(\d+)", m_name)
105
+ else:
106
+ scope_names = [m_name]
107
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
108
+ pointer = getattr(pointer, "weight")
109
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
110
+ pointer = getattr(pointer, "bias")
111
+ elif scope_names[0] == "output_weights":
112
+ pointer = getattr(pointer, "weight")
113
+ elif scope_names[0] == "squad":
114
+ pointer = getattr(pointer, "classifier")
115
+ else:
116
+ try:
117
+ pointer = getattr(pointer, scope_names[0])
118
+ except AttributeError:
119
+ logger.info(f"Skipping {'/'.join(name)}")
120
+ continue
121
+ if len(scope_names) >= 2:
122
+ num = int(scope_names[1])
123
+ pointer = pointer[num]
124
+ if m_name[-11:] == "_embeddings":
125
+ pointer = getattr(pointer, "weight")
126
+ elif m_name == "kernel":
127
+ array = np.transpose(array)
128
+ if pointer.shape != array.shape:
129
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
130
+ logger.info("Initialize PyTorch weight {}".format(name))
131
+ pointer.data = torch.from_numpy(array)
132
+ return model
133
+
134
+
135
+ class RotaryEmbedding(nn.Module):
136
+ """Rotary Embedding for positional encoding."""
137
+
138
+ def __init__(self, hidden_size, max_position_embeddings, theta, rotary_percent=1.0, device=None):
139
+ super().__init__()
140
+ if rotary_percent < 1.0:
141
+ hidden_size = int(hidden_size * rotary_percent)
142
+ self.hidden_size = hidden_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.theta = theta
145
+ inv_freq = 1.0 / (self.theta ** (torch.arange(0, hidden_size, 2, dtype=torch.int64).float().to(device) / hidden_size))
146
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
147
+
148
+ def forward(self, x, position_ids):
149
+ # x: [batch_size, num_attention_heads, seq_len, hidden_size]
150
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
151
+ position_ids_expanded = position_ids[:, None, :].float()
152
+ device_type = x.device.type
153
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
154
+ with torch.autocast(device_type=device_type, enabled=False):
155
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
156
+ emb = torch.cat((freqs, freqs), dim=-1)
157
+ cos = emb.cos()
158
+ sin = emb.sin()
159
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
160
+
161
+
162
+ def rotate_half(x):
163
+ """Rotates half the hidden dims of the input."""
164
+ x1 = x[..., : x.shape[-1] // 2]
165
+ x2 = x[..., x.shape[-1] // 2 :]
166
+ return torch.cat((-x2, x1), dim=-1)
167
+
168
+
169
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
170
+ """Applies Rotary Position Embedding to the query and key tensors.
171
+ Args:
172
+ q (`torch.Tensor`): The query tensor.
173
+ k (`torch.Tensor`): The key tensor.
174
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
175
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
176
+ position_ids (`torch.Tensor`, *optional*):
177
+ Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos.unsqueeze(unsqueeze_dim)
189
+ sin = sin.unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ class RetrievaBertEmbeddings(nn.Module):
196
+ """Construct the embeddings from word, position and token_type embeddings."""
197
+
198
+ def __init__(self, config):
199
+ super().__init__()
200
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
201
+ if config.position_embedding_type == "absolute":
202
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
203
+ else:
204
+ self.position_embeddings = None
205
+ if config.type_vocab_size > 0:
206
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
207
+ else:
208
+ self.token_type_embeddings = None
209
+
210
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
211
+ # any TensorFlow checkpoint file
212
+
213
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
214
+
215
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False)
216
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
217
+
218
+ def forward(
219
+ self,
220
+ input_ids: Optional[torch.LongTensor] = None,
221
+ token_type_ids: Optional[torch.LongTensor] = None,
222
+ position_ids: Optional[torch.LongTensor] = None,
223
+ inputs_embeds: Optional[torch.LongTensor] = None,
224
+ past_key_values_length: int = 0,
225
+ ) -> torch.Tensor:
226
+ if input_ids is not None:
227
+ input_shape = input_ids.size()
228
+ else:
229
+ input_shape = inputs_embeds.size()[:-1]
230
+
231
+ if inputs_embeds is None:
232
+ inputs_embeds = self.word_embeddings(input_ids)
233
+
234
+ if self.position_embeddings is not None:
235
+ if position_ids is None:
236
+ position_ids = self.position_ids[:, past_key_values_length : past_key_values_length + input_shape[1]]
237
+ position_embeddings = self.position_embeddings(position_ids)
238
+ else:
239
+ position_embeddings = None
240
+
241
+ if self.token_type_embeddings is not None:
242
+ if token_type_ids is None:
243
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
244
+
245
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
246
+ else:
247
+ token_type_embeddings = None
248
+
249
+ if position_embeddings is not None and token_type_embeddings is not None:
250
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
251
+ elif position_embeddings is not None:
252
+ embeddings = inputs_embeds + position_embeddings
253
+ elif token_type_embeddings is not None:
254
+ embeddings = inputs_embeds + token_type_embeddings
255
+ else:
256
+ embeddings = inputs_embeds
257
+
258
+ embeddings = self.dropout(embeddings)
259
+ return embeddings
260
+
261
+
262
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
263
+ """Repeat key/value weigts for GQA.
264
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
265
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
266
+ """
267
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
268
+ if n_rep == 1:
269
+ return hidden_states
270
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
271
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
272
+
273
+
274
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MegatronBert->RetrievaBert
275
+ class RetrievaBertSelfAttention(nn.Module):
276
+ def __init__(self, config, position_embedding_type=None):
277
+ super().__init__()
278
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
279
+ raise ValueError(
280
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})"
281
+ )
282
+
283
+ self.num_attention_heads = config.num_attention_heads
284
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
285
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
286
+
287
+ self.num_key_value_heads = config.num_key_value_heads
288
+ self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
289
+
290
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
291
+ self.key = nn.Linear(config.hidden_size, self.num_key_value_heads * self.attention_head_size)
292
+ self.value = nn.Linear(config.hidden_size, self.num_key_value_heads * self.attention_head_size)
293
+
294
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
295
+
296
+ if config.position_embedding_type == "rope":
297
+ self.rope_theta = config.rope_theta
298
+ self.rope_emb = RotaryEmbedding(self.attention_head_size, config.max_position_embeddings, self.rope_theta, config.rotary_percent)
299
+ else:
300
+ self.rope_theta = None
301
+ self.rope_emb = None
302
+
303
+ self.is_decoder = config.is_decoder
304
+
305
+ def transpose_for_scores(self, x: torch.Tensor, is_query: bool) -> torch.Tensor:
306
+ if is_query:
307
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
308
+ else:
309
+ new_x_shape = x.size()[:-1] + (self.num_key_value_heads, self.attention_head_size)
310
+ x = x.view(new_x_shape)
311
+ return x.permute(0, 2, 1, 3)
312
+
313
+ def forward(
314
+ self,
315
+ hidden_states: torch.Tensor,
316
+ attention_mask: Optional[torch.FloatTensor] = None,
317
+ position_ids: Optional[torch.LongTensor] = None,
318
+ head_mask: Optional[torch.FloatTensor] = None,
319
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
320
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
321
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
322
+ output_attentions: Optional[bool] = False,
323
+ ) -> Tuple[torch.Tensor]:
324
+ mixed_query_layer = self.query(hidden_states)
325
+ query_layer = self.transpose_for_scores(mixed_query_layer, is_query=True)
326
+
327
+ # If this is instantiated as a cross-attention module, the keys
328
+ # and values come from an encoder; the attention mask needs to be
329
+ # such that the encoder's padding tokens are not attended to.
330
+ is_cross_attention = encoder_hidden_states is not None
331
+
332
+ if is_cross_attention and past_key_value is not None:
333
+ # reuse k,v, cross_attentions
334
+ key_layer = past_key_value[0]
335
+ value_layer = past_key_value[1]
336
+ attention_mask = encoder_attention_mask
337
+ elif is_cross_attention:
338
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states), is_query=False)
339
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states), is_query=False)
340
+ attention_mask = encoder_attention_mask
341
+ else:
342
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/roformer/modeling_roformer.py#L254-L265
343
+ key_layer = self.transpose_for_scores(self.key(hidden_states), is_query=False)
344
+ value_layer = self.transpose_for_scores(self.value(hidden_states), is_query=False)
345
+
346
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L335-L336
347
+ if self.rope_emb is not None:
348
+ cos, sin = self.rope_emb(hidden_states, position_ids)
349
+ query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin)
350
+
351
+ if past_key_value is not None:
352
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
353
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
354
+
355
+ # For GQA, we repeat the key/value weights.
356
+ key_layer = repeat_kv(key_layer, self.num_key_value_groups)
357
+ value_layer = repeat_kv(value_layer, self.num_key_value_groups)
358
+
359
+ if self.is_decoder:
360
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
361
+ # Further calls to cross_attention layer can then reuse all cross-attention
362
+ # key/value_states (first "if" case)
363
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
364
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
365
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
366
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
367
+ past_key_value = (key_layer, value_layer)
368
+
369
+ # Take the dot product between "query" and "key" to get the raw attention scores.
370
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
371
+
372
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
373
+ if attention_mask is not None:
374
+ # Apply the attention mask is (precomputed for all layers in RetrievaBertModel forward() function)
375
+ attention_scores = attention_scores + attention_mask
376
+
377
+ # Normalize the attention scores to probabilities.
378
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
379
+
380
+ # This is actually dropping out entire tokens to attend to, which might
381
+ # seem a bit unusual, but is taken from the original Transformer paper.
382
+ attention_probs = self.dropout(attention_probs)
383
+
384
+ # Mask heads if we want to
385
+ if head_mask is not None:
386
+ attention_probs = attention_probs * head_mask
387
+
388
+ context_layer = torch.matmul(attention_probs, value_layer)
389
+
390
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
391
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
392
+ context_layer = context_layer.view(new_context_layer_shape)
393
+
394
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
395
+
396
+ if self.is_decoder:
397
+ outputs = outputs + (past_key_value,)
398
+ return outputs
399
+
400
+
401
+ # Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to RetrievaBertAttention below.
402
+ class RetrievaBertSelfOutput(nn.Module):
403
+ def __init__(self, config):
404
+ super().__init__()
405
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
406
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
407
+
408
+ def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
409
+ hidden_states = self.dense(hidden_states)
410
+ hidden_states = self.dropout(hidden_states)
411
+ return residual + hidden_states
412
+
413
+
414
+ # Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm.
415
+ class RetrievaBertAttention(nn.Module):
416
+ def __init__(self, config):
417
+ super().__init__()
418
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
419
+ self.self = RetrievaBertSelfAttention(config)
420
+ self.output = RetrievaBertSelfOutput(config)
421
+ self.pruned_heads = set()
422
+
423
+ def prune_heads(self, heads):
424
+ if len(heads) == 0:
425
+ return
426
+ heads, index = find_pruneable_heads_and_indices(heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads)
427
+
428
+ # Prune linear layers
429
+ self.self.query = prune_linear_layer(self.self.query, index)
430
+ self.self.key = prune_linear_layer(self.self.key, index)
431
+ self.self.value = prune_linear_layer(self.self.value, index)
432
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
433
+
434
+ # Update hyper params and store pruned heads
435
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
436
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
437
+ self.pruned_heads = self.pruned_heads.union(heads)
438
+
439
+ def forward(
440
+ self,
441
+ hidden_states: torch.Tensor,
442
+ attention_mask: Optional[torch.FloatTensor] = None,
443
+ position_ids: Optional[torch.LongTensor] = None,
444
+ head_mask: Optional[torch.FloatTensor] = None,
445
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
446
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
447
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
448
+ output_attentions: Optional[bool] = False,
449
+ ) -> Tuple[torch.Tensor]:
450
+ ln_outputs = self.ln(hidden_states)
451
+ self_outputs = self.self(
452
+ ln_outputs,
453
+ attention_mask,
454
+ position_ids,
455
+ head_mask,
456
+ encoder_hidden_states,
457
+ encoder_attention_mask,
458
+ past_key_value,
459
+ output_attentions,
460
+ )
461
+ attention_output = self.output(self_outputs[0], hidden_states)
462
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
463
+ return outputs
464
+
465
+
466
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->MegatronBert->RetrievaBert
467
+ class RetrievaBertIntermediate(nn.Module):
468
+ def __init__(self, config):
469
+ super().__init__()
470
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias)
471
+ self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias)
472
+ if isinstance(config.hidden_act, str):
473
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
474
+ else:
475
+ self.intermediate_act_fn = config.hidden_act
476
+
477
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
478
+ gate_hidden_states = self.gate_proj(hidden_states)
479
+ gate_hidden_states = self.intermediate_act_fn(gate_hidden_states)
480
+ up_hidden_state = self.up_proj(hidden_states)
481
+ hidden_states = gate_hidden_states * up_hidden_state
482
+ return hidden_states
483
+
484
+
485
+ # Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to RetrievaBertLayer below.
486
+ class RetrievaBertOutput(nn.Module):
487
+ def __init__(self, config):
488
+ super().__init__()
489
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias) # down_proj
490
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
491
+
492
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
493
+ hidden_states = self.dense(hidden_states)
494
+ hidden_states = self.dropout(hidden_states)
495
+ return input_tensor + hidden_states
496
+
497
+
498
+ # Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm.
499
+ class RetrievaBertLayer(nn.Module):
500
+ def __init__(self, config):
501
+ super().__init__()
502
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
503
+ self.seq_len_dim = 1
504
+ self.attention = RetrievaBertAttention(config)
505
+ self.is_decoder = config.is_decoder
506
+ self.add_cross_attention = config.add_cross_attention
507
+ if self.add_cross_attention:
508
+ if not self.is_decoder:
509
+ raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
510
+ self.crossattention = RetrievaBertAttention(config)
511
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
512
+ self.intermediate = RetrievaBertIntermediate(config)
513
+ self.output = RetrievaBertOutput(config)
514
+
515
+ def forward(
516
+ self,
517
+ hidden_states: torch.Tensor,
518
+ attention_mask: Optional[torch.FloatTensor] = None,
519
+ position_ids: Optional[torch.LongTensor] = None,
520
+ head_mask: Optional[torch.FloatTensor] = None,
521
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
522
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
523
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
524
+ output_attentions: Optional[bool] = False,
525
+ ) -> Tuple[torch.Tensor]:
526
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
527
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
528
+ self_attention_outputs = self.attention(
529
+ hidden_states,
530
+ attention_mask,
531
+ position_ids,
532
+ head_mask,
533
+ output_attentions=output_attentions,
534
+ past_key_value=self_attn_past_key_value,
535
+ )
536
+ attention_output = self_attention_outputs[0]
537
+
538
+ # if decoder, the last output is tuple of self-attn cache
539
+ if self.is_decoder:
540
+ outputs = self_attention_outputs[1:-1]
541
+ present_key_value = self_attention_outputs[-1]
542
+ else:
543
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
544
+
545
+ cross_attn_present_key_value = None
546
+ if self.is_decoder and encoder_hidden_states is not None:
547
+ if not hasattr(self, "crossattention"):
548
+ raise AttributeError(
549
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
550
+ " by setting `config.add_cross_attention=True`"
551
+ )
552
+
553
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
554
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
555
+ cross_attention_outputs = self.crossattention(
556
+ attention_output,
557
+ attention_mask,
558
+ position_ids,
559
+ head_mask,
560
+ encoder_hidden_states,
561
+ encoder_attention_mask,
562
+ cross_attn_past_key_value,
563
+ output_attentions,
564
+ )
565
+ attention_output = cross_attention_outputs[0]
566
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
567
+
568
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
569
+ cross_attn_present_key_value = cross_attention_outputs[-1]
570
+ present_key_value = present_key_value + cross_attn_present_key_value
571
+
572
+ layer_output = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output)
573
+ outputs = (layer_output,) + outputs
574
+
575
+ # if decoder, return the attn key/values as the last output
576
+ if self.is_decoder:
577
+ outputs = outputs + (present_key_value,)
578
+
579
+ return outputs
580
+
581
+ def feed_forward_chunk(self, attention_output):
582
+ ln_output = self.ln(attention_output)
583
+ intermediate_output = self.intermediate(ln_output)
584
+ layer_output = self.output(intermediate_output, attention_output)
585
+ return layer_output
586
+
587
+
588
+ class RetrievaBertEncoder(nn.Module):
589
+ def __init__(self, config):
590
+ super().__init__()
591
+ self.config = config
592
+ self.layer = nn.ModuleList([RetrievaBertLayer(config) for _ in range(config.num_hidden_layers)])
593
+
594
+ # The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one
595
+ # is simply the final LN (Transformer's BERT has it attached to each hidden layer).
596
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # final_layernorm
597
+ self.gradient_checkpointing = False
598
+
599
+ def forward(
600
+ self,
601
+ hidden_states: torch.Tensor,
602
+ attention_mask: Optional[torch.FloatTensor] = None,
603
+ position_ids: Optional[torch.LongTensor] = None,
604
+ head_mask: Optional[torch.FloatTensor] = None,
605
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
606
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
607
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
608
+ use_cache: Optional[bool] = None,
609
+ output_attentions: Optional[bool] = False,
610
+ output_hidden_states: Optional[bool] = False,
611
+ return_dict: Optional[bool] = True,
612
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
613
+ if self.gradient_checkpointing and self.training:
614
+ if use_cache:
615
+ logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
616
+ use_cache = False
617
+ all_hidden_states = () if output_hidden_states else None
618
+ all_self_attentions = () if output_attentions else None
619
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
620
+
621
+ next_decoder_cache = () if use_cache else None
622
+ for i, layer_module in enumerate(self.layer):
623
+ if output_hidden_states:
624
+ all_hidden_states = all_hidden_states + (hidden_states,)
625
+
626
+ layer_head_mask = head_mask[i] if head_mask is not None else None
627
+ past_key_value = past_key_values[i] if past_key_values is not None else None
628
+
629
+ if self.gradient_checkpointing and self.training:
630
+ layer_outputs = self._gradient_checkpointing_func(
631
+ layer_module.__call__,
632
+ hidden_states,
633
+ attention_mask,
634
+ position_ids,
635
+ layer_head_mask,
636
+ encoder_hidden_states,
637
+ encoder_attention_mask,
638
+ past_key_value,
639
+ output_attentions,
640
+ )
641
+ else:
642
+ layer_outputs = layer_module(
643
+ hidden_states,
644
+ attention_mask,
645
+ position_ids,
646
+ layer_head_mask,
647
+ encoder_hidden_states,
648
+ encoder_attention_mask,
649
+ past_key_value,
650
+ output_attentions,
651
+ )
652
+
653
+ # Because we moved the layer-norm at the end of the hidden layer, we have non-normali-
654
+ # zed data here. If that's really needed, we must apply LN to match Transformer's BERT.
655
+
656
+ hidden_states = layer_outputs[0]
657
+ if use_cache:
658
+ next_decoder_cache += (layer_outputs[-1],)
659
+ if output_attentions:
660
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
661
+ if self.config.add_cross_attention:
662
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
663
+
664
+ # Finalize the hidden states.
665
+ hidden_states = self.ln(hidden_states)
666
+
667
+ if output_hidden_states:
668
+ all_hidden_states = all_hidden_states + (hidden_states,)
669
+
670
+ if not return_dict:
671
+ return tuple(
672
+ v
673
+ for v in [
674
+ hidden_states,
675
+ next_decoder_cache,
676
+ all_hidden_states,
677
+ all_self_attentions,
678
+ all_cross_attentions,
679
+ ]
680
+ if v is not None
681
+ )
682
+ return BaseModelOutputWithPastAndCrossAttentions(
683
+ last_hidden_state=hidden_states,
684
+ past_key_values=next_decoder_cache,
685
+ hidden_states=all_hidden_states,
686
+ attentions=all_self_attentions,
687
+ cross_attentions=all_cross_attentions,
688
+ )
689
+
690
+
691
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->MegatronBert->RetrievaBert
692
+ class RetrievaBertPooler(nn.Module):
693
+ def __init__(self, config):
694
+ super().__init__()
695
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
696
+ self.activation = nn.Tanh()
697
+
698
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
699
+ # We "pool" the model by simply taking the hidden state corresponding
700
+ # to the first token.
701
+ first_token_tensor = hidden_states[:, 0]
702
+ pooled_output = self.dense(first_token_tensor)
703
+ pooled_output = self.activation(pooled_output)
704
+ return pooled_output
705
+
706
+
707
+ # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MegatronBert->RetrievaBert
708
+ class RetrievaBertPredictionHeadTransform(nn.Module):
709
+ def __init__(self, config):
710
+ super().__init__()
711
+ # bertlmhead
712
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
713
+ if isinstance(config.lm_head_hidden_act, str):
714
+ self.transform_act_fn = ACT2FN[config.lm_head_hidden_act]
715
+ else:
716
+ self.transform_act_fn = config.lm_head_hidden_act
717
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
718
+
719
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
720
+ hidden_states = self.dense(hidden_states)
721
+ hidden_states = self.transform_act_fn(hidden_states)
722
+ hidden_states = self.LayerNorm(hidden_states)
723
+ return hidden_states
724
+
725
+
726
+ # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MegatronBert->RetrievaBert
727
+ class RetrievaBertLMPredictionHead(nn.Module):
728
+ def __init__(self, config):
729
+ super().__init__()
730
+ self.transform = RetrievaBertPredictionHeadTransform(config)
731
+
732
+ # The output weights are the same as the input embeddings, but there is
733
+ # an output-only bias for each token.
734
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
735
+
736
+ # output_layer
737
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
738
+
739
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
740
+ self.decoder.bias = self.bias
741
+
742
+ def _tie_weights(self):
743
+ self.decoder.bias = self.bias
744
+
745
+ def forward(self, hidden_states):
746
+ hidden_states = self.transform(hidden_states)
747
+ hidden_states = self.decoder(hidden_states)
748
+ return hidden_states
749
+
750
+
751
+ # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MegatronBert->RetrievaBert
752
+ class RetrievaBertOnlyMLMHead(nn.Module):
753
+ def __init__(self, config):
754
+ super().__init__()
755
+ self.predictions = RetrievaBertLMPredictionHead(config)
756
+
757
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
758
+ prediction_scores = self.predictions(sequence_output)
759
+ return prediction_scores
760
+
761
+
762
+ # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert->RetrievaBert
763
+ class RetrievaBertOnlyNSPHead(nn.Module):
764
+ def __init__(self, config):
765
+ super().__init__()
766
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
767
+
768
+ def forward(self, pooled_output):
769
+ seq_relationship_score = self.seq_relationship(pooled_output)
770
+ return seq_relationship_score
771
+
772
+
773
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->MegatronBert->RetrievaBert
774
+ class RetrievaBertPreTrainingHeads(nn.Module):
775
+ def __init__(self, config):
776
+ super().__init__()
777
+ self.predictions = RetrievaBertLMPredictionHead(config)
778
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
779
+
780
+ def forward(self, sequence_output, pooled_output):
781
+ prediction_scores = self.predictions(sequence_output)
782
+ seq_relationship_score = self.seq_relationship(pooled_output)
783
+ return prediction_scores, seq_relationship_score
784
+
785
+
786
+ class RetrievaBertPreTrainedModel(PreTrainedModel):
787
+ """
788
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
789
+ models.
790
+ """
791
+
792
+ config_class = RetrievaBertConfig
793
+ load_tf_weights = load_tf_weights_in_megatron_bert
794
+ base_model_prefix = "bert"
795
+ supports_gradient_checkpointing = True
796
+
797
+ def _init_weights(self, module):
798
+ """Initialize the weights"""
799
+ if isinstance(module, (nn.Linear, nn.Embedding)):
800
+ # Slightly different from the TF version which uses truncated_normal for initialization
801
+ # cf https://github.com/pytorch/pytorch/pull/5617
802
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
803
+ elif isinstance(module, nn.LayerNorm):
804
+ module.bias.data.zero_()
805
+ module.weight.data.fill_(1.0)
806
+ if isinstance(module, nn.Linear) and module.bias is not None:
807
+ module.bias.data.zero_()
808
+
809
+
810
+ @dataclass
811
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert->RetrievaBert
812
+ class RetrievaBertForPreTrainingOutput(ModelOutput):
813
+ """
814
+ Output type of [`RetrievaBertForPreTraining`].
815
+ Args:
816
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
817
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
818
+ (classification) loss.
819
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
820
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
821
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
822
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
823
+ before SoftMax).
824
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
825
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
826
+ shape `(batch_size, sequence_length, hidden_size)`.
827
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
828
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
829
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
830
+ sequence_length)`.
831
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
832
+ heads.
833
+ """
834
+
835
+ loss: Optional[torch.FloatTensor] = None
836
+ prediction_logits: torch.FloatTensor = None
837
+ seq_relationship_logits: torch.FloatTensor = None
838
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
839
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
840
+
841
+
842
+ RETRIEVA_BERT_START_DOCSTRING = r"""
843
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
844
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
845
+ etc.)
846
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
847
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
848
+ and behavior.
849
+ Parameters:
850
+ config ([`RetrievaBertConfig`]): Model configuration class with all the parameters of the model.
851
+ Initializing with a config file does not load the weights associated with the model, only the
852
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
853
+ """
854
+
855
+ RETRIEVA_BERT_INPUTS_DOCSTRING = r"""
856
+ Args:
857
+ input_ids (`torch.LongTensor` of shape `({0})`):
858
+ Indices of input sequence tokens in the vocabulary.
859
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
860
+ [`PreTrainedTokenizer.__call__`] for details.
861
+ [What are input IDs?](../glossary#input-ids)
862
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
863
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
864
+ - 1 for tokens that are **not masked**,
865
+ - 0 for tokens that are **masked**.
866
+ [What are attention masks?](../glossary#attention-mask)
867
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
868
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
869
+ 1]`:
870
+ - 0 corresponds to a *sentence A* token,
871
+ - 1 corresponds to a *sentence B* token.
872
+ [What are token type IDs?](../glossary#token-type-ids)
873
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
874
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
875
+ config.max_position_embeddings - 1]`.
876
+ [What are position IDs?](../glossary#position-ids)
877
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
878
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
879
+ - 1 indicates the head is **not masked**,
880
+ - 0 indicates the head is **masked**.
881
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
882
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
883
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
884
+ model's internal embedding lookup matrix.
885
+ output_attentions (`bool`, *optional*):
886
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
887
+ tensors for more detail.
888
+ output_hidden_states (`bool`, *optional*):
889
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
890
+ more detail.
891
+ return_dict (`bool`, *optional*):
892
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
893
+ """
894
+
895
+
896
+ @add_start_docstrings(
897
+ "The bare RetrievaBert Model transformer outputting raw hidden-states without any specific head on top.",
898
+ RETRIEVA_BERT_START_DOCSTRING,
899
+ )
900
+ class RetrievaBertModel(RetrievaBertPreTrainedModel):
901
+ """
902
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
903
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
904
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
905
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
906
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
907
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
908
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
909
+ """
910
+
911
+ def __init__(self, config, add_pooling_layer=True):
912
+ super().__init__(config)
913
+ self.config = config
914
+
915
+ self.embeddings = RetrievaBertEmbeddings(config)
916
+ self.encoder = RetrievaBertEncoder(config)
917
+
918
+ self.pooler = RetrievaBertPooler(config) if add_pooling_layer else None
919
+
920
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False)
921
+
922
+ # Initialize weights and apply final processing
923
+ self.post_init()
924
+
925
+ def get_input_embeddings(self):
926
+ return self.embeddings.word_embeddings
927
+
928
+ def set_input_embeddings(self, value):
929
+ self.embeddings.word_embeddings = value
930
+
931
+ def _prune_heads(self, heads_to_prune):
932
+ """
933
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
934
+ class PreTrainedModel
935
+ """
936
+ for layer, heads in heads_to_prune.items():
937
+ self.encoder.layer[layer].attention.prune_heads(heads)
938
+
939
+ @add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
940
+ @add_code_sample_docstrings(
941
+ checkpoint=_CHECKPOINT_FOR_DOC,
942
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
943
+ config_class=_CONFIG_FOR_DOC,
944
+ )
945
+ def forward(
946
+ self,
947
+ input_ids: Optional[torch.LongTensor] = None,
948
+ attention_mask: Optional[torch.FloatTensor] = None,
949
+ token_type_ids: Optional[torch.LongTensor] = None,
950
+ position_ids: Optional[torch.LongTensor] = None,
951
+ head_mask: Optional[torch.FloatTensor] = None,
952
+ inputs_embeds: Optional[torch.FloatTensor] = None,
953
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
954
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
955
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
956
+ use_cache: Optional[bool] = None,
957
+ output_attentions: Optional[bool] = None,
958
+ output_hidden_states: Optional[bool] = None,
959
+ return_dict: Optional[bool] = None,
960
+ ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
961
+ r"""
962
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
963
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
964
+ the model is configured as a decoder.
965
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
966
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
967
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
968
+ - 1 for tokens that are **not masked**,
969
+ - 0 for tokens that are **masked**.
970
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
971
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
972
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
973
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
974
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
975
+ use_cache (`bool`, *optional*):
976
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
977
+ `past_key_values`).
978
+ """
979
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
980
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
981
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
982
+
983
+ if self.config.is_decoder:
984
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
985
+ else:
986
+ use_cache = False
987
+
988
+ if input_ids is not None and inputs_embeds is not None:
989
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
990
+ elif input_ids is not None:
991
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
992
+ input_shape = input_ids.size()
993
+ elif inputs_embeds is not None:
994
+ input_shape = inputs_embeds.size()[:-1]
995
+ else:
996
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
997
+
998
+ batch_size, seq_length = input_shape
999
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1000
+
1001
+ # past_key_values_length
1002
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1003
+
1004
+ if attention_mask is None:
1005
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1006
+ if token_type_ids is None:
1007
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1008
+ if position_ids is None:
1009
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
1010
+
1011
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1012
+ # ourselves in which case we just need to make it broadcastable to all heads.
1013
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
1014
+
1015
+ # If a 2D or 3D attention mask is provided for the cross-attention
1016
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1017
+ if self.config.is_decoder and encoder_hidden_states is not None:
1018
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1019
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1020
+ if encoder_attention_mask is None:
1021
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1022
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1023
+ else:
1024
+ encoder_extended_attention_mask = None
1025
+
1026
+ # Prepare head mask if needed
1027
+ # 1.0 in head_mask indicate we keep the head
1028
+ # attention_probs has shape bsz x n_heads x N x N
1029
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1030
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1031
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1032
+
1033
+ embedding_output = self.embeddings(
1034
+ input_ids=input_ids,
1035
+ position_ids=position_ids,
1036
+ token_type_ids=token_type_ids,
1037
+ inputs_embeds=inputs_embeds,
1038
+ past_key_values_length=past_key_values_length,
1039
+ )
1040
+ encoder_outputs = self.encoder(
1041
+ embedding_output,
1042
+ attention_mask=extended_attention_mask,
1043
+ position_ids=position_ids,
1044
+ head_mask=head_mask,
1045
+ encoder_hidden_states=encoder_hidden_states,
1046
+ encoder_attention_mask=encoder_extended_attention_mask,
1047
+ past_key_values=past_key_values,
1048
+ use_cache=use_cache,
1049
+ output_attentions=output_attentions,
1050
+ output_hidden_states=output_hidden_states,
1051
+ return_dict=return_dict,
1052
+ )
1053
+ sequence_output = encoder_outputs[0]
1054
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1055
+
1056
+ if not return_dict:
1057
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1058
+
1059
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1060
+ last_hidden_state=sequence_output,
1061
+ pooler_output=pooled_output,
1062
+ past_key_values=encoder_outputs.past_key_values,
1063
+ hidden_states=encoder_outputs.hidden_states,
1064
+ attentions=encoder_outputs.attentions,
1065
+ cross_attentions=encoder_outputs.cross_attentions,
1066
+ )
1067
+
1068
+
1069
+ @add_start_docstrings(
1070
+ """
1071
+ MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
1072
+ `next sentence prediction (classification)` head.
1073
+ RetrievaBert uses a `masked language modeling` only.
1074
+ """,
1075
+ RETRIEVA_BERT_START_DOCSTRING,
1076
+ )
1077
+ class RetrievaBertForPreTraining(RetrievaBertPreTrainedModel):
1078
+ _tied_weights_keys = ["cls.predictions.decoder"]
1079
+
1080
+ def __init__(self, config, add_binary_head=True):
1081
+ super().__init__(config)
1082
+
1083
+ self.bert = RetrievaBertModel(config)
1084
+ self.cls = RetrievaBertPreTrainingHeads(config)
1085
+
1086
+ # Initialize weights and apply final processing
1087
+ self.post_init()
1088
+
1089
+ def get_output_embeddings(self):
1090
+ return self.cls.predictions.decoder
1091
+
1092
+ def set_output_embeddings(self, new_embeddings):
1093
+ self.cls.predictions.decoder = new_embeddings
1094
+ self.cls.predictions.bias = new_embeddings.bias
1095
+
1096
+ @add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1097
+ @replace_return_docstrings(output_type=RetrievaBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
1098
+ def forward(
1099
+ self,
1100
+ input_ids: Optional[torch.LongTensor] = None,
1101
+ attention_mask: Optional[torch.FloatTensor] = None,
1102
+ token_type_ids: Optional[torch.LongTensor] = None,
1103
+ position_ids: Optional[torch.LongTensor] = None,
1104
+ head_mask: Optional[torch.FloatTensor] = None,
1105
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1106
+ labels: Optional[torch.LongTensor] = None,
1107
+ next_sentence_label: Optional[torch.LongTensor] = None,
1108
+ output_attentions: Optional[bool] = None,
1109
+ output_hidden_states: Optional[bool] = None,
1110
+ return_dict: Optional[bool] = None,
1111
+ ) -> Union[Tuple, RetrievaBertForPreTrainingOutput]:
1112
+ r"""
1113
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1114
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1115
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1116
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1117
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1118
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
1119
+ (see `input_ids` docstring) Indices should be in `[0, 1]`:
1120
+ - 0 indicates sequence B is a continuation of sequence A,
1121
+ - 1 indicates sequence B is a random sequence.
1122
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1123
+ Used to hide legacy arguments that have been deprecated.
1124
+ Returns:
1125
+ Example:
1126
+ ```python
1127
+ >>> from transformers import AutoTokenizer
1128
+ >>> from models import RetrievaBertForPreTraining
1129
+ >>> import torch
1130
+ >>> tokenizer = AutoTokenizer.from_pretrained("retrieva-jp/bert-1.3b")
1131
+ >>> model = RetrievaBertForPreTraining.from_pretrained("retrieva-jp/bert-1.3b")
1132
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1133
+ >>> outputs = model(**inputs)
1134
+ >>> prediction_logits = outputs.prediction_logits
1135
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
1136
+ ```"""
1137
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1138
+
1139
+ outputs = self.bert(
1140
+ input_ids,
1141
+ attention_mask=attention_mask,
1142
+ token_type_ids=token_type_ids,
1143
+ position_ids=position_ids,
1144
+ head_mask=head_mask,
1145
+ inputs_embeds=inputs_embeds,
1146
+ output_attentions=output_attentions,
1147
+ output_hidden_states=output_hidden_states,
1148
+ return_dict=return_dict,
1149
+ )
1150
+
1151
+ sequence_output, pooled_output = outputs[:2]
1152
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
1153
+
1154
+ total_loss = None
1155
+ if labels is not None and next_sentence_label is not None:
1156
+ loss_fct = CrossEntropyLoss()
1157
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1158
+ next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
1159
+ total_loss = masked_lm_loss + next_sentence_loss
1160
+
1161
+ if not return_dict:
1162
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
1163
+ return ((total_loss,) + output) if total_loss is not None else output
1164
+
1165
+ return RetrievaBertForPreTrainingOutput(
1166
+ loss=total_loss,
1167
+ prediction_logits=prediction_scores,
1168
+ seq_relationship_logits=seq_relationship_score,
1169
+ hidden_states=outputs.hidden_states,
1170
+ attentions=outputs.attentions,
1171
+ )
1172
+
1173
+
1174
+ @add_start_docstrings(
1175
+ """RetrievaBert Model with a `language modeling` head on top for CLM fine-tuning.""",
1176
+ RETRIEVA_BERT_START_DOCSTRING,
1177
+ )
1178
+ class RetrievaBertForCausalLM(RetrievaBertPreTrainedModel):
1179
+ _tied_weights_keys = ["cls.predictions.decoder"]
1180
+
1181
+ def __init__(self, config):
1182
+ super().__init__(config)
1183
+
1184
+ if not config.is_decoder:
1185
+ logger.warning("If you want to use `RetrievaBertForCausalLM` as a standalone, add `is_decoder=True.`")
1186
+
1187
+ self.bert = RetrievaBertModel(config, add_pooling_layer=False)
1188
+ self.cls = RetrievaBertOnlyMLMHead(config)
1189
+
1190
+ # Initialize weights and apply final processing
1191
+ self.post_init()
1192
+
1193
+ def get_output_embeddings(self):
1194
+ return self.cls.predictions.decoder
1195
+
1196
+ def set_output_embeddings(self, new_embeddings):
1197
+ self.cls.predictions.decoder = new_embeddings
1198
+ self.cls.predictions.bias = new_embeddings.bias
1199
+
1200
+ @add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1201
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
1202
+ def forward(
1203
+ self,
1204
+ input_ids: Optional[torch.LongTensor] = None,
1205
+ attention_mask: Optional[torch.FloatTensor] = None,
1206
+ token_type_ids: Optional[torch.LongTensor] = None,
1207
+ position_ids: Optional[torch.LongTensor] = None,
1208
+ head_mask: Optional[torch.FloatTensor] = None,
1209
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1210
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1211
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1212
+ labels: Optional[torch.LongTensor] = None,
1213
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1214
+ use_cache: Optional[bool] = None,
1215
+ output_attentions: Optional[bool] = None,
1216
+ output_hidden_states: Optional[bool] = None,
1217
+ return_dict: Optional[bool] = None,
1218
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1219
+ r"""
1220
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1221
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1222
+ the model is configured as a decoder.
1223
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1224
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1225
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1226
+ - 1 for tokens that are **not masked**,
1227
+ - 0 for tokens that are **masked**.
1228
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1229
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1230
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1231
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
1232
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1233
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1234
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1235
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1236
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1237
+ use_cache (`bool`, *optional*):
1238
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1239
+ `past_key_values`).
1240
+ Returns:
1241
+ Example:
1242
+ ```python
1243
+ >>> from transformers import AutoTokenizer
1244
+ >>> from models import RetrievaBertForCausalLM, RetrievaBertConfig
1245
+ >>> import torch
1246
+ >>> tokenizer = AutoTokenizer.from_pretrained("retrieva-jp/bert-1.3b")
1247
+ >>> model = RetrievaBertForCausalLM.from_pretrained("retrieva-jp/bert-1.3b", is_decoder=True)
1248
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1249
+ >>> outputs = model(**inputs)
1250
+ >>> prediction_logits = outputs.logits
1251
+ ```"""
1252
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1253
+ if labels is not None:
1254
+ use_cache = False
1255
+
1256
+ outputs = self.bert(
1257
+ input_ids,
1258
+ attention_mask=attention_mask,
1259
+ token_type_ids=token_type_ids,
1260
+ position_ids=position_ids,
1261
+ head_mask=head_mask,
1262
+ inputs_embeds=inputs_embeds,
1263
+ encoder_hidden_states=encoder_hidden_states,
1264
+ encoder_attention_mask=encoder_attention_mask,
1265
+ past_key_values=past_key_values,
1266
+ use_cache=use_cache,
1267
+ output_attentions=output_attentions,
1268
+ output_hidden_states=output_hidden_states,
1269
+ return_dict=return_dict,
1270
+ )
1271
+
1272
+ sequence_output = outputs[0]
1273
+ prediction_scores = self.cls(sequence_output)
1274
+
1275
+ lm_loss = None
1276
+ if labels is not None:
1277
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1278
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1279
+ labels = labels[:, 1:].contiguous()
1280
+ loss_fct = CrossEntropyLoss()
1281
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1282
+
1283
+ if not return_dict:
1284
+ output = (prediction_scores,) + outputs[2:]
1285
+ return ((lm_loss,) + output) if lm_loss is not None else output
1286
+
1287
+ return CausalLMOutputWithCrossAttentions(
1288
+ loss=lm_loss,
1289
+ logits=prediction_scores,
1290
+ past_key_values=outputs.past_key_values,
1291
+ hidden_states=outputs.hidden_states,
1292
+ attentions=outputs.attentions,
1293
+ cross_attentions=outputs.cross_attentions,
1294
+ )
1295
+
1296
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
1297
+ input_shape = input_ids.shape
1298
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1299
+ if attention_mask is None:
1300
+ attention_mask = input_ids.new_ones(input_shape)
1301
+
1302
+ # cut decoder_input_ids if past_key_values is used
1303
+ if past_key_values is not None:
1304
+ past_length = past_key_values[0][0].shape[2]
1305
+
1306
+ # Some generation methods already pass only the last input ID
1307
+ if input_ids.shape[1] > past_length:
1308
+ remove_prefix_length = past_length
1309
+ else:
1310
+ # Default to old behavior: keep only final ID
1311
+ remove_prefix_length = input_ids.shape[1] - 1
1312
+
1313
+ input_ids = input_ids[:, remove_prefix_length:]
1314
+
1315
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
1316
+
1317
+ def _reorder_cache(self, past_key_values, beam_idx):
1318
+ reordered_past = ()
1319
+ for layer_past in past_key_values:
1320
+ reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),)
1321
+ return reordered_past
1322
+
1323
+
1324
+ @add_start_docstrings("""RetrievaBert Model with a `language modeling` head on top.""", RETRIEVA_BERT_START_DOCSTRING)
1325
+ class RetrievaBertForMaskedLM(RetrievaBertPreTrainedModel):
1326
+ _tied_weights_keys = ["cls.predictions.decoder"]
1327
+
1328
+ def __init__(self, config):
1329
+ super().__init__(config)
1330
+
1331
+ if config.is_decoder:
1332
+ logger.warning("If you want to use `RetrievaBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention.")
1333
+
1334
+ self.bert = RetrievaBertModel(config, add_pooling_layer=False)
1335
+ self.cls = RetrievaBertOnlyMLMHead(config)
1336
+
1337
+ # Initialize weights and apply final processing
1338
+ self.post_init()
1339
+
1340
+ def get_output_embeddings(self):
1341
+ return self.cls.predictions.decoder
1342
+
1343
+ def set_output_embeddings(self, new_embeddings):
1344
+ self.cls.predictions.decoder = new_embeddings
1345
+ self.cls.predictions.bias = new_embeddings.bias
1346
+
1347
+ @add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1348
+ @add_code_sample_docstrings(
1349
+ checkpoint=_CHECKPOINT_FOR_DOC,
1350
+ output_type=MaskedLMOutput,
1351
+ config_class=_CONFIG_FOR_DOC,
1352
+ )
1353
+ def forward(
1354
+ self,
1355
+ input_ids: Optional[torch.LongTensor] = None,
1356
+ attention_mask: Optional[torch.FloatTensor] = None,
1357
+ token_type_ids: Optional[torch.LongTensor] = None,
1358
+ position_ids: Optional[torch.LongTensor] = None,
1359
+ head_mask: Optional[torch.FloatTensor] = None,
1360
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1361
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1362
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1363
+ labels: Optional[torch.LongTensor] = None,
1364
+ output_attentions: Optional[bool] = None,
1365
+ output_hidden_states: Optional[bool] = None,
1366
+ return_dict: Optional[bool] = None,
1367
+ ) -> Union[Tuple, MaskedLMOutput]:
1368
+ r"""
1369
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1370
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1371
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1372
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1373
+ """
1374
+
1375
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1376
+
1377
+ outputs = self.bert(
1378
+ input_ids,
1379
+ attention_mask=attention_mask,
1380
+ token_type_ids=token_type_ids,
1381
+ position_ids=position_ids,
1382
+ head_mask=head_mask,
1383
+ inputs_embeds=inputs_embeds,
1384
+ encoder_hidden_states=encoder_hidden_states,
1385
+ encoder_attention_mask=encoder_attention_mask,
1386
+ output_attentions=output_attentions,
1387
+ output_hidden_states=output_hidden_states,
1388
+ return_dict=return_dict,
1389
+ )
1390
+
1391
+ sequence_output = outputs[0]
1392
+ prediction_scores = self.cls(sequence_output)
1393
+
1394
+ masked_lm_loss = None
1395
+ if labels is not None:
1396
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1397
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1398
+
1399
+ if not return_dict:
1400
+ output = (prediction_scores,) + outputs[2:]
1401
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1402
+
1403
+ return MaskedLMOutput(
1404
+ loss=masked_lm_loss,
1405
+ logits=prediction_scores,
1406
+ hidden_states=outputs.hidden_states,
1407
+ attentions=outputs.attentions,
1408
+ )
1409
+
1410
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
1411
+ input_shape = input_ids.shape
1412
+ effective_batch_size = input_shape[0]
1413
+
1414
+ # add a dummy token
1415
+ if self.config.pad_token_id is None:
1416
+ raise ValueError("The PAD token should be defined for generation")
1417
+ attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
1418
+ dummy_token = torch.full((effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device)
1419
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
1420
+
1421
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
1422
+
1423
+
1424
+ @add_start_docstrings(
1425
+ """RetrievaBert Model with a `next sentence prediction (classification)` head on top.""",
1426
+ RETRIEVA_BERT_START_DOCSTRING,
1427
+ )
1428
+ class RetrievaBertForNextSentencePrediction(RetrievaBertPreTrainedModel):
1429
+ def __init__(self, config):
1430
+ super().__init__(config)
1431
+
1432
+ self.bert = RetrievaBertModel(config)
1433
+ self.cls = RetrievaBertOnlyNSPHead(config)
1434
+
1435
+ # Initialize weights and apply final processing
1436
+ self.post_init()
1437
+
1438
+ @add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1439
+ @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
1440
+ def forward(
1441
+ self,
1442
+ input_ids: Optional[torch.LongTensor] = None,
1443
+ attention_mask: Optional[torch.FloatTensor] = None,
1444
+ token_type_ids: Optional[torch.LongTensor] = None,
1445
+ position_ids: Optional[torch.LongTensor] = None,
1446
+ head_mask: Optional[torch.FloatTensor] = None,
1447
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1448
+ labels: Optional[torch.LongTensor] = None,
1449
+ output_attentions: Optional[bool] = None,
1450
+ output_hidden_states: Optional[bool] = None,
1451
+ return_dict: Optional[bool] = None,
1452
+ **kwargs,
1453
+ ) -> Union[Tuple, NextSentencePredictorOutput]:
1454
+ r"""
1455
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1456
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
1457
+ (see `input_ids` docstring). Indices should be in `[0, 1]`:
1458
+ - 0 indicates sequence B is a continuation of sequence A,
1459
+ - 1 indicates sequence B is a random sequence.
1460
+ Returns:
1461
+ Example:
1462
+ ```python
1463
+ >>> from transformers import AutoTokenizer
1464
+ >>> from models import RetrievaBertForNextSentencePrediction
1465
+ >>> import torch
1466
+ >>> tokenizer = AutoTokenizer.from_pretrained("retrieva-jp/bert-1.3b")
1467
+ >>> model = RetrievaBertForNextSentencePrediction.from_pretrained("retrieva-jp/bert-1.3b")
1468
+ >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
1469
+ >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
1470
+ >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
1471
+ >>> outputs = model(**encoding, labels=torch.LongTensor([1]))
1472
+ >>> logits = outputs.logits
1473
+ >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
1474
+ ```"""
1475
+
1476
+ if "next_sentence_label" in kwargs:
1477
+ warnings.warn(
1478
+ "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.",
1479
+ FutureWarning,
1480
+ )
1481
+ labels = kwargs.pop("next_sentence_label")
1482
+
1483
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1484
+
1485
+ outputs = self.bert(
1486
+ input_ids,
1487
+ attention_mask=attention_mask,
1488
+ token_type_ids=token_type_ids,
1489
+ position_ids=position_ids,
1490
+ head_mask=head_mask,
1491
+ inputs_embeds=inputs_embeds,
1492
+ output_attentions=output_attentions,
1493
+ output_hidden_states=output_hidden_states,
1494
+ return_dict=return_dict,
1495
+ )
1496
+
1497
+ pooled_output = outputs[1]
1498
+
1499
+ seq_relationship_scores = self.cls(pooled_output)
1500
+
1501
+ next_sentence_loss = None
1502
+ if labels is not None:
1503
+ loss_fct = CrossEntropyLoss()
1504
+ next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
1505
+
1506
+ if not return_dict:
1507
+ output = (seq_relationship_scores,) + outputs[2:]
1508
+ return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
1509
+
1510
+ return NextSentencePredictorOutput(
1511
+ loss=next_sentence_loss,
1512
+ logits=seq_relationship_scores,
1513
+ hidden_states=outputs.hidden_states,
1514
+ attentions=outputs.attentions,
1515
+ )
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<EOD|LLM-jp>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<s|LLM-jp>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "cls_token": {
13
+ "content": "<CLS|LLM-jp>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "eos_token": {
20
+ "content": "</s|LLM-jp>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "mask_token": {
27
+ "content": "<MASK|LLM-jp>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "<PAD|LLM-jp>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "sep_token": {
41
+ "content": "<SEP|LLM-jp>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ },
47
+ "unk_token": {
48
+ "content": "<unk|LLM-jp>",
49
+ "lstrip": false,
50
+ "normalized": false,
51
+ "rstrip": false,
52
+ "single_word": false
53
+ }
54
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk|LLM-jp>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s|LLM-jp>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s|LLM-jp>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<MASK|LLM-jp>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<PAD|LLM-jp>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<CLS|LLM-jp>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "<SEP|LLM-jp>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "<EOD|LLM-jp>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ }
67
+ },
68
+ "additional_special_tokens": [
69
+ "<EOD|LLM-jp>"
70
+ ],
71
+ "bos_token": "<s|LLM-jp>",
72
+ "clean_up_tokenization_spaces": false,
73
+ "cls_token": "<CLS|LLM-jp>",
74
+ "eod_token": "</s|LLM-jp>",
75
+ "eos_token": "</s|LLM-jp>",
76
+ "extra_ids": 0,
77
+ "mask_token": "<MASK|LLM-jp>",
78
+ "max_length": 1024,
79
+ "model_max_length": 1024,
80
+ "pad_to_multiple_of": null,
81
+ "pad_token": "<PAD|LLM-jp>",
82
+ "pad_token_type_id": 0,
83
+ "padding_side": "right",
84
+ "sep_token": "<SEP|LLM-jp>",
85
+ "sp_model_kwargs": {},
86
+ "stride": 0,
87
+ "tokenizer_class": "PreTrainedTokenizerFast",
88
+ "truncation_side": "right",
89
+ "truncation_strategy": "longest_first",
90
+ "unk_token": "<unk|LLM-jp>"
91
+ }