--- library_name: transformers datasets: - pksx01/alpaca_bhojpuri_instruction language: - bh base_model: - sarvamai/sarvam-1 --- This model has been instruction tuned from [sarvamai/sarvam-1](https://huggingface.co/sarvamai/sarvam-1). This is an early checkpoint trained for one complete epoch. Checkpoints with further training will be released in future. ## Uses This model can be used to chat in Bhojpuri language. ## How to Get Started with the Model Use the code below to get started with the model. ``` import torch # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("pksx01/sarvam-1-it-bhojpuri") # Load base model model = AutoModelForCausalLM.from_pretrained( "sarvamai/sarvam-1", torch_dtype=torch.bfloat16, device_map="auto" ) model.resize_token_embeddings(len(tokenizer)) # Load the PEFT model peft_model = PeftModel.from_pretrained( model, "pksx01/sarvam-1-it-bhojpuri", is_trainable=False ) message = [{"role": "user", "content": "भारत के पहिला प्रधानमंत्री के रहे?"}] model_ip = tokenizer.apply_chat_template(message, tokenize=False) tokenized_ip = tokenizer(model_ip, return_tensors="pt").to("cuda") peft_model.eval() with torch.no_grad(): op_tokens = peft_model.generate( **tokenized_ip, max_new_tokens=250, temperature=0.01, top_k=50, top_p=0.95, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id ) op = tokenizer.decode(op_tokens[0], skip_special_tokens=True) print(op) ``` ## Training Details ### Training Data This model has be trained on an instruction dataset - [pksx01/alpaca_bhojpuri_instruction](https://huggingface.co/datasets/pksx01/alpaca_bhojpuri_instruction).