plaguss HF staff commited on
Commit
4f4cbe1
1 Parent(s): 447453b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -55
README.md CHANGED
@@ -62,51 +62,6 @@ for idx in range(1, len(example["completions"])+1):
62
  # Step 9 Predicted (score): False (0.97) Label: False
63
  ```
64
 
65
- Example 1)
66
-
67
- ```python
68
- from datasets import load_dataset
69
- from transformers import pipeline
70
- import os
71
- os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
72
-
73
- model_name = "plaguss/Qwen2.5-0.5B-Math-Shepherd-PRM-0.2"
74
-
75
- pipe = pipeline("token-classification", model=model_name, device="cuda")
76
- dataset = load_dataset("trl-lib/math_shepherd")
77
- example = dataset["test"][10]
78
-
79
- sep = "\n"
80
-
81
- print(sep.join((example["prompt"], *example["completions"])))
82
- for idx in range(1, len(example["completions"])+1):
83
- text = sep.join((example["prompt"], *example["completions"][0:idx])) + sep
84
- output = pipe(text)
85
- score = float(output[-1]["score"])
86
- pred = True if output[-1]["entity"] == "LABEL_1" else False
87
- print(f"Step {idx}\tPredicted (score): {pred} ({score:.2f})\tLabel: {example['labels'][idx-1]}")
88
-
89
- # Grandma gave Bryce and Carter some raisins. Bryce received 6 more raisins than Carter, and Carter received half the number of raisins Bryce received. How many raisins did Bryce receive?
90
- # Step 1: Let $b$ be the number of raisins Bryce received and $c$ be the number of raisins Carter received.
91
- # Step 2: We are given that $b = c + 6$ and $c = \frac{1}{2}b$.
92
- # Step 3: Substituting the second equation into the first equation, we get $b = c + 6 = \frac{1}{2}b + 6$.
93
- # Step 4: Simplifying, we have $b = \frac{1}{2}b + 6$.
94
- # Step 5: Subtracting $\frac{1}{2}b$ from both sides, we get $\frac{1}{2}b - b = 6$.
95
- # Step 6: Simplifying further, we have $\frac{1}{2}b - 2b = 6$.
96
- # Step 7: Combining like terms, we have $-\frac{1}{2}b = 6$.
97
- # Step 8: Multiplying both sides by $-2$, we get $b = -12$.
98
- # Step 9: Therefore, Bryce received $\boxed{-12}$ raisins.The answer is: -12
99
- # Step 1 Predicted (score): True (0.99) Label: True
100
- # Step 2 Predicted (score): True (0.99) Label: True
101
- # Step 3 Predicted (score): True (0.94) Label: True
102
- # Step 4 Predicted (score): True (0.82) Label: True
103
- # Step 5 Predicted (score): True (0.58) Label: True
104
- # Step 6 Predicted (score): False (0.62) Label: False
105
- # Step 7 Predicted (score): False (0.77) Label: False
106
- # Step 8 Predicted (score): False (0.91) Label: False
107
- # Step 9 Predicted (score): False (0.97) Label: False
108
- ```
109
-
110
  Example 2)
111
 
112
  ```python
@@ -193,16 +148,16 @@ for i, example in enumerate(examples):
193
  pred = True if output[-1]["entity"] == "LABEL_1" else False
194
  print(f"Step {idx}\tPredicted (score): {pred} ({score:.2f})\tLabel: {example['labels'][idx-1]}")
195
 
196
- - Example 0:
197
- Step 1 Predicted (score): True (0.90) Label: True
198
- Step 2 Predicted (score): False (0.55) Label: True
199
- Step 3 Predicted (score): False (0.62) Label: True
200
- Step 4 Predicted (score): False (0.90) Label: True
201
- - Example 1:
202
- Step 1 Predicted (score): True (0.90) Label: True
203
- Step 2 Predicted (score): False (0.55) Label: True
204
- Step 3 Predicted (score): False (0.62) Label: True
205
- Step 4 Predicted (score): False (0.96) Label: False
206
  ```
207
 
208
 
 
62
  # Step 9 Predicted (score): False (0.97) Label: False
63
  ```
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  Example 2)
66
 
67
  ```python
 
148
  pred = True if output[-1]["entity"] == "LABEL_1" else False
149
  print(f"Step {idx}\tPredicted (score): {pred} ({score:.2f})\tLabel: {example['labels'][idx-1]}")
150
 
151
+ # - Example 0:
152
+ # Step 1 Predicted (score): True (0.90) Label: True
153
+ # Step 2 Predicted (score): False (0.55) Label: True
154
+ # Step 3 Predicted (score): False (0.62) Label: True
155
+ # Step 4 Predicted (score): False (0.90) Label: True
156
+ # - Example 1:
157
+ # Step 1 Predicted (score): True (0.90) Label: True
158
+ # Step 2 Predicted (score): False (0.55) Label: True
159
+ # Step 3 Predicted (score): False (0.62) Label: True
160
+ # Step 4 Predicted (score): False (0.96) Label: False
161
  ```
162
 
163