pmgautam commited on
Commit
af3b2ec
1 Parent(s): 9c30e90

HF RL course unit1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.41 +/- 21.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2dac0513a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2dac051430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2dac0514c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2dac051550>", "_build": "<function ActorCriticPolicy._build at 0x7f2dac0515e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2dac051670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2dac051700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2dac051790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2dac051820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2dac0518b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2dac051940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2dac0519d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2dac047fc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676204555068991799, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2eOj2JPKU+YiqtOC4Ggb5sHBo9w9/9PAAAAAAAAAAAAA5qvNJ7pbvyn1I9cQipPBlcF72iMY49AACAPwAAgD8z88+8xTgRPiIBIT6MiDq+q3CcPSt1/TsAAAAAAAAAAJoDATyPwlU19C6fO51EpTy6yxq7gMQVPAAAgD8AAIA/wMf0PRkNJT9qloG+t3qpvrtm070C7cy9AAAAAAAAAACzRgQ9NizFPhKBabyjY6C+PXufvAYqv70AAAAAAAAAAI2WsL3xLh8/1iZKPdyRk75wF2a9Fvp1PQAAAAAAAAAA0KJnvsv2Vz87c6E+p43CvhUXuTuty3I+AAAAAAAAAACaavi8UlCuuXNdpjratR41ZxWiurLPx7kAAIA/AACAP2bGkjqVJ0k+ZpU8Pgffjb5RQSs+GgBevQAAAAAAAAAApg6UPXhbnj5yH0K+CnCGvrbrGr67/kQ7AAAAAAAAAACGL0w+wyZ3P76CmjxpR7e+xZ2bPk5fLb0AAAAAAAAAACZbLr6LfFw/mrd8PQuDq74ztAy+HtVAPgAAAAAAAAAA5tAAPeEavDmiVxO8dWpVPF4jBztmgEQ9AAAAAAAAAAAABi09KSxZOTJqzru/dgQ9BD1JvPVz6L0AAIA/AACAP02FAD0Rfvg98we3vHy2hL5PHYA9ZHGvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsTOFziuncECUhpRSlIwBbJRNeQGMAXSUR0CXFE8wHqu9dX2UKGgGaAloD0MIqU2c3C9SckCUhpRSlGgVS/1oFkdAlxgltGd7OXV9lChoBmgJaA9DCMzSTs0lr3JAlIaUUpRoFU2wAWgWR0CXGCmO2iL3dX2UKGgGaAloD0MILGaEtwfUbkCUhpRSlGgVTQkCaBZHQJcYYWN3np11fZQoaAZoCWgPQwjqeTcWFLZtQJSGlFKUaBVN1AFoFkdAlxjWBjFyaXV9lChoBmgJaA9DCE27mGY6SXFAlIaUUpRoFU3yAWgWR0CXGSdUKiPAdX2UKGgGaAloD0MIMCx/vq2va0CUhpRSlGgVTXIBaBZHQJca84jrzGx1fZQoaAZoCWgPQwjmXfWA+WFvQJSGlFKUaBVNewFoFkdAlxv0ulGgBnV9lChoBmgJaA9DCCx+U1gpf3BAlIaUUpRoFU20AWgWR0CXNxIZIg/1dX2UKGgGaAloD0MIdNL7xldYcECUhpRSlGgVTQgCaBZHQJc3OMCLdep1fZQoaAZoCWgPQwjtgsE1N3FwQJSGlFKUaBVNMQFoFkdAlzgJdfLLZHV9lChoBmgJaA9DCFCLwcN0EnBAlIaUUpRoFU1GAWgWR0CXOPznzQNTdX2UKGgGaAloD0MI/oAHBhCXbUCUhpRSlGgVS/poFkdAlzoUz41xbXV9lChoBmgJaA9DCELQ0aqWnHBAlIaUUpRoFU1IAWgWR0CXOo9NN8E3dX2UKGgGaAloD0MI3dPVHYuecUCUhpRSlGgVTQMBaBZHQJc7La0x/NJ1fZQoaAZoCWgPQwgps0EmWXFwQJSGlFKUaBVNFQFoFkdAlzuViKBNEnV9lChoBmgJaA9DCPfLJyuG+nFAlIaUUpRoFU1sAWgWR0CXPm4Z/CqIdX2UKGgGaAloD0MIRyHJrB4DcECUhpRSlGgVTd4BaBZHQJc+oHryDqZ1fZQoaAZoCWgPQwgEdjV5CjpyQJSGlFKUaBVNNAFoFkdAlz86lYU343V9lChoBmgJaA9DCLfu5qnOO3JAlIaUUpRoFU2cAWgWR0CXQFdDIBBBdX2UKGgGaAloD0MIou4DkJowckCUhpRSlGgVTQYCaBZHQJdAwupS75F1fZQoaAZoCWgPQwjPg7uzdihuQJSGlFKUaBVNJwFoFkdAl0Lz5O8CgnV9lChoBmgJaA9DCMRfkzVqBm1AlIaUUpRoFU27AWgWR0CXQ1js2NvPdX2UKGgGaAloD0MIBwd7EwOTcUCUhpRSlGgVTWABaBZHQJdED3j+7191fZQoaAZoCWgPQwgPmfIhKJNyQJSGlFKUaBVNFwFoFkdAl0TqzE74jHV9lChoBmgJaA9DCMprJXQXfnBAlIaUUpRoFU0ZAWgWR0CXRg+DOC5FdX2UKGgGaAloD0MIS6shcU+xcECUhpRSlGgVTaYBaBZHQJdJHrIHTql1fZQoaAZoCWgPQwiemWA416xwQJSGlFKUaBVNGgFoFkdAl0mIrSVnmXV9lChoBmgJaA9DCJShKqaSE3BAlIaUUpRoFUv/aBZHQJdKYFgUlAx1fZQoaAZoCWgPQwixUdZv5t9xQJSGlFKUaBVN1gFoFkdAl0yLLMcIaHV9lChoBmgJaA9DCHe8yW/RGR9AlIaUUpRoFUvgaBZHQJdMvDpC8e11fZQoaAZoCWgPQwh24QfnU2NwQJSGlFKUaBVNKgJoFkdAl0zOLNwBHXV9lChoBmgJaA9DCK/PnPVpaXFAlIaUUpRoFU1xA2gWR0CXTNw3o9s8dX2UKGgGaAloD0MIlBeZgF+6ZkCUhpRSlGgVTegDaBZHQJdOHfYSQHR1fZQoaAZoCWgPQwimme51kshwQJSGlFKUaBVNOwFoFkdAl0+sa0hNd3V9lChoBmgJaA9DCNGuQspPdW9AlIaUUpRoFU0iAWgWR0CXT908eS0TdX2UKGgGaAloD0MIwylz841OcUCUhpRSlGgVTYwBaBZHQJdQeEmICU51fZQoaAZoCWgPQwh32hoRzJhwQJSGlFKUaBVNDgFoFkdAl1E/SMLncXV9lChoBmgJaA9DCONPVDYs5XBAlIaUUpRoFU30AWgWR0CXU42Pkq+bdX2UKGgGaAloD0MIVYUGYtmpcECUhpRSlGgVTXQCaBZHQJdUoQVbiZR1fZQoaAZoCWgPQwjadARwMzluQJSGlFKUaBVNcwFoFkdAl1TwiV0LdHV9lChoBmgJaA9DCBIR/kXQYG5AlIaUUpRoFU0XAWgWR0CXVaz7uUlidX2UKGgGaAloD0MIbTzYYnd8c0CUhpRSlGgVTXIBaBZHQJdZlSP2f051fZQoaAZoCWgPQwgcfcwHRNdyQJSGlFKUaBVNKAFoFkdAl1oNMTN+s3V9lChoBmgJaA9DCA9h/DRuL3JAlIaUUpRoFU0yAWgWR0CXWkvOyE+QdX2UKGgGaAloD0MIt18+WbENcUCUhpRSlGgVTZ8CaBZHQJdavB+F10V1fZQoaAZoCWgPQwgoCvSJPHhyQJSGlFKUaBVL7mgWR0CXW07Y02tMdX2UKGgGaAloD0MIg/krZO5UcUCUhpRSlGgVTawBaBZHQJdd/rleWv91fZQoaAZoCWgPQwgMWd3qedZwQJSGlFKUaBVNIAFoFkdAl16qUu+RHXV9lChoBmgJaA9DCBZLkXwlb3JAlIaUUpRoFU0SAWgWR0CXXuBMzuWsdX2UKGgGaAloD0MIFoVdFL0ocUCUhpRSlGgVTWgBaBZHQJdfI7DEWIp1fZQoaAZoCWgPQwhngAuyJT9yQJSGlFKUaBVNRwFoFkdAl1+kA5q/NHV9lChoBmgJaA9DCGZn0TvViHBAlIaUUpRoFU2lAWgWR0CXdaEbHZK4dX2UKGgGaAloD0MIexFtx9T0ckCUhpRSlGgVTREBaBZHQJd171PFefJ1fZQoaAZoCWgPQwjtRElI5A9xQJSGlFKUaBVL9WgWR0CXdfCE6DGtdX2UKGgGaAloD0MIUS/4NKcmcUCUhpRSlGgVTcQBaBZHQJd2Yr9VFQV1fZQoaAZoCWgPQwiYTYBheT9zQJSGlFKUaBVNLAFoFkdAl3fikfs/p3V9lChoBmgJaA9DCN16TQ+Kgm1AlIaUUpRoFU0JAWgWR0CXeo2gFotddX2UKGgGaAloD0MIC7WmeYcgc0CUhpRSlGgVTYsBaBZHQJd6r+BH09R1fZQoaAZoCWgPQwj4GKw41XZxQJSGlFKUaBVNWAFoFkdAl3zUXHim23V9lChoBmgJaA9DCB9Hc2SlHXFAlIaUUpRoFU1CAWgWR0CXfX4Ju2qldX2UKGgGaAloD0MI2jhiLX7FcECUhpRSlGgVTWYBaBZHQJd+N6AvtdB1fZQoaAZoCWgPQwjGFKxx9rBwQJSGlFKUaBVNIAFoFkdAl37ooJAt4HV9lChoBmgJaA9DCKaBH9UwL3FAlIaUUpRoFU01AWgWR0CXf1LtNSIhdX2UKGgGaAloD0MIrp/+s6aZcECUhpRSlGgVTScBaBZHQJd/kjps41h1fZQoaAZoCWgPQwgEjgQabPhuQJSGlFKUaBVNNwFoFkdAl4EatcObzHV9lChoBmgJaA9DCHV0XI3sZW9AlIaUUpRoFU0eAWgWR0CXgTueSSvDdX2UKGgGaAloD0MIM+GX+nlibkCUhpRSlGgVTeIBaBZHQJeCoPrfLs91fZQoaAZoCWgPQwg6deWzPDFyQJSGlFKUaBVNeAFoFkdAl4LFtfoicHV9lChoBmgJaA9DCG0a22tBpG5AlIaUUpRoFU1hAWgWR0CXguX0oSctdX2UKGgGaAloD0MI+8kYH6YyckCUhpRSlGgVTW0BaBZHQJeDPKGL1mJ1fZQoaAZoCWgPQwg2Ia0xqD5zQJSGlFKUaBVNawFoFkdAl4VmE9Mbm3V9lChoBmgJaA9DCF8n9WXpS3FAlIaUUpRoFU3oAWgWR0CXhcFqSHM2dX2UKGgGaAloD0MIyjLEsa4xbkCUhpRSlGgVTTwBaBZHQJeGQ2NvOyF1fZQoaAZoCWgPQwikqgmi7vlqQJSGlFKUaBVNGwFoFkdAl4f9bxEv03V9lChoBmgJaA9DCNJyoIfaBG9AlIaUUpRoFU07AWgWR0CXiB55JK8MdX2UKGgGaAloD0MIH/KWqx/UcECUhpRSlGgVTREBaBZHQJeId/gBLf11fZQoaAZoCWgPQwj/zCA+sH1xQJSGlFKUaBVNgAFoFkdAl4iTO5avBHV9lChoBmgJaA9DCHIYzF+hKHBAlIaUUpRoFU1kAWgWR0CXiiqVQhwEdX2UKGgGaAloD0MIjxzpDIw3cUCUhpRSlGgVTUABaBZHQJeKgKx9oex1fZQoaAZoCWgPQwh4gCct3DlxQJSGlFKUaBVNHAFoFkdAl4rNsJpnH3V9lChoBmgJaA9DCDiGAODYt3FAlIaUUpRoFU0MAWgWR0CXi4+fRNRFdX2UKGgGaAloD0MIqByTxb07cECUhpRSlGgVTXsBaBZHQJeLxEAo5Px1fZQoaAZoCWgPQwiL3qmAO/hxQJSGlFKUaBVNGQFoFkdAl4wLLU1AJXV9lChoBmgJaA9DCD+RJ0lXL29AlIaUUpRoFU1jAWgWR0CXjLVktmL+dX2UKGgGaAloD0MI8YEd/8WtcUCUhpRSlGgVTToBaBZHQJeM/ndO6/Z1fZQoaAZoCWgPQwiZZyWteJJwQJSGlFKUaBVNPgFoFkdAl42NI5HVgHV9lChoBmgJaA9DCHx9rUuN8HFAlIaUUpRoFU0LAWgWR0CXjk7IDHOsdX2UKGgGaAloD0MIQl4PJkX+b0CUhpRSlGgVTWcBaBZHQJeS399+gDl1fZQoaAZoCWgPQwh8m/7sR7htQJSGlFKUaBVNMgFoFkdAl5NszhxYJXV9lChoBmgJaA9DCAubAS6IJ3JAlIaUUpRoFU0tAWgWR0CXk/4jrzGxdX2UKGgGaAloD0MIyecVT/08ckCUhpRSlGgVTTsBaBZHQJeUCJiy6c11fZQoaAZoCWgPQwhTXcDLDGZxQJSGlFKUaBVNggFoFkdAl5TgaFVT73V9lChoBmgJaA9DCKMCJ9uAwXJAlIaUUpRoFU0fAWgWR0CXlbbI91U3dX2UKGgGaAloD0MIVvMckS/3ckCUhpRSlGgVTWEBaBZHQJeWRfmcOLB1fZQoaAZoCWgPQwhNSkG3F1FyQJSGlFKUaBVNAgFoFkdAl5ZeAiFCcHV9lChoBmgJaA9DCHFzKhnAC3JAlIaUUpRoFU0RAWgWR0CXlr4WUKRddX2UKGgGaAloD0MIw7mGGVqPckCUhpRSlGgVTVABaBZHQJeXddPci4d1fZQoaAZoCWgPQwgEAMeevUpxQJSGlFKUaBVNTwFoFkdAl5hG6XjU/nV9lChoBmgJaA9DCKYO8npw5nFAlIaUUpRoFU0SAWgWR0CXmQM9r434dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b82c5900f3757ca905cb304603b4ab675b3ee7ca6878ced729ed1ea5dda2c582
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2dac0513a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2dac051430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2dac0514c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2dac051550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2dac0515e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2dac051670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2dac051700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2dac051790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2dac051820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2dac0518b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2dac051940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2dac0519d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f2dac047fc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676204555068991799,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2eOj2JPKU+YiqtOC4Ggb5sHBo9w9/9PAAAAAAAAAAAAA5qvNJ7pbvyn1I9cQipPBlcF72iMY49AACAPwAAgD8z88+8xTgRPiIBIT6MiDq+q3CcPSt1/TsAAAAAAAAAAJoDATyPwlU19C6fO51EpTy6yxq7gMQVPAAAgD8AAIA/wMf0PRkNJT9qloG+t3qpvrtm070C7cy9AAAAAAAAAACzRgQ9NizFPhKBabyjY6C+PXufvAYqv70AAAAAAAAAAI2WsL3xLh8/1iZKPdyRk75wF2a9Fvp1PQAAAAAAAAAA0KJnvsv2Vz87c6E+p43CvhUXuTuty3I+AAAAAAAAAACaavi8UlCuuXNdpjratR41ZxWiurLPx7kAAIA/AACAP2bGkjqVJ0k+ZpU8Pgffjb5RQSs+GgBevQAAAAAAAAAApg6UPXhbnj5yH0K+CnCGvrbrGr67/kQ7AAAAAAAAAACGL0w+wyZ3P76CmjxpR7e+xZ2bPk5fLb0AAAAAAAAAACZbLr6LfFw/mrd8PQuDq74ztAy+HtVAPgAAAAAAAAAA5tAAPeEavDmiVxO8dWpVPF4jBztmgEQ9AAAAAAAAAAAABi09KSxZOTJqzru/dgQ9BD1JvPVz6L0AAIA/AACAP02FAD0Rfvg98we3vHy2hL5PHYA9ZHGvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsTOFziuncECUhpRSlIwBbJRNeQGMAXSUR0CXFE8wHqu9dX2UKGgGaAloD0MIqU2c3C9SckCUhpRSlGgVS/1oFkdAlxgltGd7OXV9lChoBmgJaA9DCMzSTs0lr3JAlIaUUpRoFU2wAWgWR0CXGCmO2iL3dX2UKGgGaAloD0MILGaEtwfUbkCUhpRSlGgVTQkCaBZHQJcYYWN3np11fZQoaAZoCWgPQwjqeTcWFLZtQJSGlFKUaBVN1AFoFkdAlxjWBjFyaXV9lChoBmgJaA9DCE27mGY6SXFAlIaUUpRoFU3yAWgWR0CXGSdUKiPAdX2UKGgGaAloD0MIMCx/vq2va0CUhpRSlGgVTXIBaBZHQJca84jrzGx1fZQoaAZoCWgPQwjmXfWA+WFvQJSGlFKUaBVNewFoFkdAlxv0ulGgBnV9lChoBmgJaA9DCCx+U1gpf3BAlIaUUpRoFU20AWgWR0CXNxIZIg/1dX2UKGgGaAloD0MIdNL7xldYcECUhpRSlGgVTQgCaBZHQJc3OMCLdep1fZQoaAZoCWgPQwjtgsE1N3FwQJSGlFKUaBVNMQFoFkdAlzgJdfLLZHV9lChoBmgJaA9DCFCLwcN0EnBAlIaUUpRoFU1GAWgWR0CXOPznzQNTdX2UKGgGaAloD0MI/oAHBhCXbUCUhpRSlGgVS/poFkdAlzoUz41xbXV9lChoBmgJaA9DCELQ0aqWnHBAlIaUUpRoFU1IAWgWR0CXOo9NN8E3dX2UKGgGaAloD0MI3dPVHYuecUCUhpRSlGgVTQMBaBZHQJc7La0x/NJ1fZQoaAZoCWgPQwgps0EmWXFwQJSGlFKUaBVNFQFoFkdAlzuViKBNEnV9lChoBmgJaA9DCPfLJyuG+nFAlIaUUpRoFU1sAWgWR0CXPm4Z/CqIdX2UKGgGaAloD0MIRyHJrB4DcECUhpRSlGgVTd4BaBZHQJc+oHryDqZ1fZQoaAZoCWgPQwgEdjV5CjpyQJSGlFKUaBVNNAFoFkdAlz86lYU343V9lChoBmgJaA9DCLfu5qnOO3JAlIaUUpRoFU2cAWgWR0CXQFdDIBBBdX2UKGgGaAloD0MIou4DkJowckCUhpRSlGgVTQYCaBZHQJdAwupS75F1fZQoaAZoCWgPQwjPg7uzdihuQJSGlFKUaBVNJwFoFkdAl0Lz5O8CgnV9lChoBmgJaA9DCMRfkzVqBm1AlIaUUpRoFU27AWgWR0CXQ1js2NvPdX2UKGgGaAloD0MIBwd7EwOTcUCUhpRSlGgVTWABaBZHQJdED3j+7191fZQoaAZoCWgPQwgPmfIhKJNyQJSGlFKUaBVNFwFoFkdAl0TqzE74jHV9lChoBmgJaA9DCMprJXQXfnBAlIaUUpRoFU0ZAWgWR0CXRg+DOC5FdX2UKGgGaAloD0MIS6shcU+xcECUhpRSlGgVTaYBaBZHQJdJHrIHTql1fZQoaAZoCWgPQwiemWA416xwQJSGlFKUaBVNGgFoFkdAl0mIrSVnmXV9lChoBmgJaA9DCJShKqaSE3BAlIaUUpRoFUv/aBZHQJdKYFgUlAx1fZQoaAZoCWgPQwixUdZv5t9xQJSGlFKUaBVN1gFoFkdAl0yLLMcIaHV9lChoBmgJaA9DCHe8yW/RGR9AlIaUUpRoFUvgaBZHQJdMvDpC8e11fZQoaAZoCWgPQwh24QfnU2NwQJSGlFKUaBVNKgJoFkdAl0zOLNwBHXV9lChoBmgJaA9DCK/PnPVpaXFAlIaUUpRoFU1xA2gWR0CXTNw3o9s8dX2UKGgGaAloD0MIlBeZgF+6ZkCUhpRSlGgVTegDaBZHQJdOHfYSQHR1fZQoaAZoCWgPQwimme51kshwQJSGlFKUaBVNOwFoFkdAl0+sa0hNd3V9lChoBmgJaA9DCNGuQspPdW9AlIaUUpRoFU0iAWgWR0CXT908eS0TdX2UKGgGaAloD0MIwylz841OcUCUhpRSlGgVTYwBaBZHQJdQeEmICU51fZQoaAZoCWgPQwh32hoRzJhwQJSGlFKUaBVNDgFoFkdAl1E/SMLncXV9lChoBmgJaA9DCONPVDYs5XBAlIaUUpRoFU30AWgWR0CXU42Pkq+bdX2UKGgGaAloD0MIVYUGYtmpcECUhpRSlGgVTXQCaBZHQJdUoQVbiZR1fZQoaAZoCWgPQwjadARwMzluQJSGlFKUaBVNcwFoFkdAl1TwiV0LdHV9lChoBmgJaA9DCBIR/kXQYG5AlIaUUpRoFU0XAWgWR0CXVaz7uUlidX2UKGgGaAloD0MIbTzYYnd8c0CUhpRSlGgVTXIBaBZHQJdZlSP2f051fZQoaAZoCWgPQwgcfcwHRNdyQJSGlFKUaBVNKAFoFkdAl1oNMTN+s3V9lChoBmgJaA9DCA9h/DRuL3JAlIaUUpRoFU0yAWgWR0CXWkvOyE+QdX2UKGgGaAloD0MIt18+WbENcUCUhpRSlGgVTZ8CaBZHQJdavB+F10V1fZQoaAZoCWgPQwgoCvSJPHhyQJSGlFKUaBVL7mgWR0CXW07Y02tMdX2UKGgGaAloD0MIg/krZO5UcUCUhpRSlGgVTawBaBZHQJdd/rleWv91fZQoaAZoCWgPQwgMWd3qedZwQJSGlFKUaBVNIAFoFkdAl16qUu+RHXV9lChoBmgJaA9DCBZLkXwlb3JAlIaUUpRoFU0SAWgWR0CXXuBMzuWsdX2UKGgGaAloD0MIFoVdFL0ocUCUhpRSlGgVTWgBaBZHQJdfI7DEWIp1fZQoaAZoCWgPQwhngAuyJT9yQJSGlFKUaBVNRwFoFkdAl1+kA5q/NHV9lChoBmgJaA9DCGZn0TvViHBAlIaUUpRoFU2lAWgWR0CXdaEbHZK4dX2UKGgGaAloD0MIexFtx9T0ckCUhpRSlGgVTREBaBZHQJd171PFefJ1fZQoaAZoCWgPQwjtRElI5A9xQJSGlFKUaBVL9WgWR0CXdfCE6DGtdX2UKGgGaAloD0MIUS/4NKcmcUCUhpRSlGgVTcQBaBZHQJd2Yr9VFQV1fZQoaAZoCWgPQwiYTYBheT9zQJSGlFKUaBVNLAFoFkdAl3fikfs/p3V9lChoBmgJaA9DCN16TQ+Kgm1AlIaUUpRoFU0JAWgWR0CXeo2gFotddX2UKGgGaAloD0MIC7WmeYcgc0CUhpRSlGgVTYsBaBZHQJd6r+BH09R1fZQoaAZoCWgPQwj4GKw41XZxQJSGlFKUaBVNWAFoFkdAl3zUXHim23V9lChoBmgJaA9DCB9Hc2SlHXFAlIaUUpRoFU1CAWgWR0CXfX4Ju2qldX2UKGgGaAloD0MI2jhiLX7FcECUhpRSlGgVTWYBaBZHQJd+N6AvtdB1fZQoaAZoCWgPQwjGFKxx9rBwQJSGlFKUaBVNIAFoFkdAl37ooJAt4HV9lChoBmgJaA9DCKaBH9UwL3FAlIaUUpRoFU01AWgWR0CXf1LtNSIhdX2UKGgGaAloD0MIrp/+s6aZcECUhpRSlGgVTScBaBZHQJd/kjps41h1fZQoaAZoCWgPQwgEjgQabPhuQJSGlFKUaBVNNwFoFkdAl4EatcObzHV9lChoBmgJaA9DCHV0XI3sZW9AlIaUUpRoFU0eAWgWR0CXgTueSSvDdX2UKGgGaAloD0MIM+GX+nlibkCUhpRSlGgVTeIBaBZHQJeCoPrfLs91fZQoaAZoCWgPQwg6deWzPDFyQJSGlFKUaBVNeAFoFkdAl4LFtfoicHV9lChoBmgJaA9DCG0a22tBpG5AlIaUUpRoFU1hAWgWR0CXguX0oSctdX2UKGgGaAloD0MI+8kYH6YyckCUhpRSlGgVTW0BaBZHQJeDPKGL1mJ1fZQoaAZoCWgPQwg2Ia0xqD5zQJSGlFKUaBVNawFoFkdAl4VmE9Mbm3V9lChoBmgJaA9DCF8n9WXpS3FAlIaUUpRoFU3oAWgWR0CXhcFqSHM2dX2UKGgGaAloD0MIyjLEsa4xbkCUhpRSlGgVTTwBaBZHQJeGQ2NvOyF1fZQoaAZoCWgPQwikqgmi7vlqQJSGlFKUaBVNGwFoFkdAl4f9bxEv03V9lChoBmgJaA9DCNJyoIfaBG9AlIaUUpRoFU07AWgWR0CXiB55JK8MdX2UKGgGaAloD0MIH/KWqx/UcECUhpRSlGgVTREBaBZHQJeId/gBLf11fZQoaAZoCWgPQwj/zCA+sH1xQJSGlFKUaBVNgAFoFkdAl4iTO5avBHV9lChoBmgJaA9DCHIYzF+hKHBAlIaUUpRoFU1kAWgWR0CXiiqVQhwEdX2UKGgGaAloD0MIjxzpDIw3cUCUhpRSlGgVTUABaBZHQJeKgKx9oex1fZQoaAZoCWgPQwh4gCct3DlxQJSGlFKUaBVNHAFoFkdAl4rNsJpnH3V9lChoBmgJaA9DCDiGAODYt3FAlIaUUpRoFU0MAWgWR0CXi4+fRNRFdX2UKGgGaAloD0MIqByTxb07cECUhpRSlGgVTXsBaBZHQJeLxEAo5Px1fZQoaAZoCWgPQwiL3qmAO/hxQJSGlFKUaBVNGQFoFkdAl4wLLU1AJXV9lChoBmgJaA9DCD+RJ0lXL29AlIaUUpRoFU1jAWgWR0CXjLVktmL+dX2UKGgGaAloD0MI8YEd/8WtcUCUhpRSlGgVTToBaBZHQJeM/ndO6/Z1fZQoaAZoCWgPQwiZZyWteJJwQJSGlFKUaBVNPgFoFkdAl42NI5HVgHV9lChoBmgJaA9DCHx9rUuN8HFAlIaUUpRoFU0LAWgWR0CXjk7IDHOsdX2UKGgGaAloD0MIQl4PJkX+b0CUhpRSlGgVTWcBaBZHQJeS399+gDl1fZQoaAZoCWgPQwh8m/7sR7htQJSGlFKUaBVNMgFoFkdAl5NszhxYJXV9lChoBmgJaA9DCAubAS6IJ3JAlIaUUpRoFU0tAWgWR0CXk/4jrzGxdX2UKGgGaAloD0MIyecVT/08ckCUhpRSlGgVTTsBaBZHQJeUCJiy6c11fZQoaAZoCWgPQwhTXcDLDGZxQJSGlFKUaBVNggFoFkdAl5TgaFVT73V9lChoBmgJaA9DCKMCJ9uAwXJAlIaUUpRoFU0fAWgWR0CXlbbI91U3dX2UKGgGaAloD0MIVvMckS/3ckCUhpRSlGgVTWEBaBZHQJeWRfmcOLB1fZQoaAZoCWgPQwhNSkG3F1FyQJSGlFKUaBVNAgFoFkdAl5ZeAiFCcHV9lChoBmgJaA9DCHFzKhnAC3JAlIaUUpRoFU0RAWgWR0CXlr4WUKRddX2UKGgGaAloD0MIw7mGGVqPckCUhpRSlGgVTVABaBZHQJeXddPci4d1fZQoaAZoCWgPQwgEAMeevUpxQJSGlFKUaBVNTwFoFkdAl5hG6XjU/nV9lChoBmgJaA9DCKYO8npw5nFAlIaUUpRoFU0SAWgWR0CXmQM9r434dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:055636709adc481f1750ae80166ed4adbeb9b2bf64f948e0861a205c2515d780
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:744ae00f35628d8e0a1d033d3b7f4cd61f4995e23d0405bdc76869320b53ff80
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (230 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.41113200818836, "std_reward": 21.90325665373676, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T13:01:50.740352"}