pneubauer commited on
Commit
3b82d84
·
1 Parent(s): 0ea41c0

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1467.68 +/- 184.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39296796488c0fffcf1818ef047327d33ca3f8a8087d82b707e2cbd41aa18ffa
3
+ size 129254
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e46d54310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e46d543a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e46d54430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e46d544c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7e46d54550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7e46d545e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e46d54670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e46d54700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7e46d54790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e46d54820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e46d548b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e46d54940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7e46d51120>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675437035235902154,
68
+ "learning_rate": 0.001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALK2Ij3iPaG+bmkMPwzHuj+YyFE/srcNP18hBj60sUG/YtaevrHumT8QKHg/lpwFP2rXij4rWra/VbMzPxxuFD953QS+DLyjv+TaJj/P0KU/7T42v0XivT2eLF2/D3u2Pd71cD+RSPu/QhENP6eChb9xh808UDA0v0t0xj4MBd4/LHSJvi/pIr/RJI2+otyovuMCNj9QvDG9lqBHPsI0lr6C8Zm/cHhZPzRRwz4JUtS/qm95v54yJb/VRp0+5eG4P256Jr9PYi+/YLQgv0aQkT/e9XA/kUj7v0IRDT+ngoW/1CdevZaa+j4clQk/i+diPxt7vD3VA7m/yKtlv74Coryddic/wuNEvhHwY78oodc9+lIsv6stiz/sURs/0mkDwH/zCb8g75o/dCTLvmqWGT/M5TW/jUShPQSbtz2CvB8/OP2HvwxnAj9CEQ0/p4KFv5Plor8xBa4/8SlKvRgOmb52s5c/YktPvlzA7b5VOZc/xF03P6Xufr0tP1+/COfdu4hcAz7ZwhA/VR4oPlk2KL+VCaE/4AAlP8hENb4Fw7A+0nEcv9VMtL6+ody+i1htvt71cD8MZwI/QhENPyNvdT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtHDm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATvgQPgAAAAA9Fd2/AAAAALb8rr0AAAAAHGLmPwAAAADkLAy9AAAAAC9X2j8AAAAA1MwPvgAAAABexOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV13sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ5B+7wAAAAA8UrevwAAAAB3fwI+AAAAAHKG2j8AAAAAzo0tPQAAAAAxy+I/AAAAAHP5yb0AAAAAsZznvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHb1TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRXeq9AAAAAEJy+r8AAAAAY0L0PAAAAABpidw/AAAAALECfz0AAAAAWUL1PwAAAACPXoK9AAAAAM+M7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVRkY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQMW/PQAAAAAfCOC/AAAAAPUVkzwAAAAAnB39PwAAAAALlyM9AAAAAFq26j8AAAAAGOGDvQAAAAC8D/K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUV6uLaVUyMAWyUTegDjAF0lEdAqdDHhAGB4HV9lChoBkdAmTLhoh6jWWgHTegDaAhHQKnSXPLxI8R1fZQoaAZHQJpv8lTm4iJoB03oA2gIR0Cp0z8aGYa6dX2UKGgGR0CbxQ1vES/TaAdN6ANoCEdAqd77544ZM3V9lChoBkdAnhHNSqEOAmgHTegDaAhHQKnfYHBUJfJ1fZQoaAZHQJhA3yauwHJoB03oA2gIR0Cp4GGT1TR6dX2UKGgGR0CV4GtdAxBWaAdN6ANoCEdAqeDqItUXHnV9lChoBkdAlkq4UFjd6GgHTegDaAhHQKnqr+0gKWt1fZQoaAZHQJvZ9CCz1K5oB03oA2gIR0Cp6w+bExZddX2UKGgGR0CdZc5NGmUGaAdN6ANoCEdAqewxhz/6wnV9lChoBkdAnDSpvUBnz2gHTegDaAhHQKntADvmYBx1fZQoaAZHQGEWzr3TNMZoB0v3aAhHQKnub1yNn5B1fZQoaAZHQIVs+nhsImhoB03mAWgIR0Cp92DTjNpudX2UKGgGR0CYhE1IRRMwaAdN6ANoCEdAqfrSbYsd1nV9lChoBkdAmVlHxBmf5GgHTegDaAhHQKn70WRA8jl1fZQoaAZHQJj7LYK6WgRoB03oA2gIR0Cp/FyQgcLjdX2UKGgGR0CZtcSqEOAiaAdN6ANoCEdAqgLrgydnTXV9lChoBkdAms25Uo8ZDWgHTegDaAhHQKoGYO7QLNR1fZQoaAZHQJ78amP5pJxoB03oA2gIR0CqB2Dlgc94dX2UKGgGR0CeBR4ZdfLLaAdN6ANoCEdAqgfrNMXaanV9lChoBkdAnAMURODaoWgHTegDaAhHQKoQavllsgx1fZQoaAZHQJoxrUpd8iRoB03oA2gIR0CqFfgrhBJJdX2UKGgGR0CX+gYJ3PiUaAdN6ANoCEdAqhchZ4fOlnV9lChoBkdAmwA+dsi0OWgHTegDaAhHQKoXuEaESM91fZQoaAZHQJgfMsTWXkZoB03oA2gIR0CqHo5FPSDzdX2UKGgGR0CXbn95hSccaAdN6ANoCEdAqiH9GoaUA3V9lChoBkdAmYIO6RQrMGgHTegDaAhHQKoi/HAAQxx1fZQoaAZHQJOuFXgccVBoB03oA2gIR0CqI4nxz7uVdX2UKGgGR0CUQfyvLX+VaAdN6ANoCEdAqiq+tfXws3V9lChoBkdAkuLew5eZ5WgHTegDaAhHQKowDKU3XI51fZQoaAZHQJbWbN0NjLBoB03oA2gIR0CqMbZIH1OCdX2UKGgGR0CTAHJdB0IUaAdN6ANoCEdAqjKVbcGke3V9lChoBkdAlZF0HMUypWgHTegDaAhHQKo5vBInSfF1fZQoaAZHQJtgEf+0gKZoB03oA2gIR0CqPUTF+/g0dX2UKGgGR0Cawb2TxG2DaAdN6ANoCEdAqj5NDneSCHV9lChoBkdAm2zrrxAjZGgHTegDaAhHQKo+1pX6qKh1fZQoaAZHQJr2S+10DEFoB03oA2gIR0CqRZbJfYz0dX2UKGgGR0BqJRGKAJ9iaAdN6ANoCEdAqkmhKDkELnV9lChoBkdAjgSktdzGP2gHTegDaAhHQKpLMQXAM2F1fZQoaAZHQJHcvCyhSLtoB03oA2gIR0CqTBMLncL0dX2UKGgGR0CaglneSB9UaAdN6ANoCEdAqlXqpYLb6HV9lChoBkdAmFBrojfNzWgHTegDaAhHQKpZf0RODap1fZQoaAZHQJpX3DAJswdoB03oA2gIR0CqWoKslsxgdX2UKGgGR0CctSWxyGSIaAdN6ANoCEdAqlsI5T6zmnV9lChoBkdAa5Y580DU3GgHTegDaAhHQKpiw6RyOrB1fZQoaAZHQJbkCLIgeRxoB03oA2gIR0CqaGa2nbZfdX2UKGgGR0CW+9PoFFDwaAdN6ANoCEdAqmqPR1HOKXV9lChoBkdAnrwDjFQ2uWgHTegDaAhHQKprhK9wm3R1fZQoaAZHQJYIJ2W6bvxoB03oA2gIR0CqdZHbRF7VdX2UKGgGR0CVamtxMnJDaAdN6ANoCEdAqnj/5xiobXV9lChoBkdAmuRerU9ZBGgHTegDaAhHQKp6KFA3T/h1fZQoaAZHQJkckse4kNZoB03oA2gIR0CqerTo2XLNdX2UKGgGR0CZf8qB3A2yaAdN6ANoCEdAqoFN5prULHV9lChoBkdAmF3+XVsk6mgHTegDaAhHQKqEvHo5ggJ1fZQoaAZHQJazqI/JNj9oB03oA2gIR0CqhcgMUh3adX2UKGgGR0CYLK+HrQgLaAdN6ANoCEdAqoZQ7YChe3V9lChoBkdAj+ty6UaAF2gHTegDaAhHQKqPX/MGHHp1fZQoaAZHQJcvctnPE89oB03oA2gIR0CqlK92xIJ7dX2UKGgGR0CfB1OGTLW7aAdN6ANoCEdAqpWo/9pAU3V9lChoBkdAnM7vXGwRoWgHTegDaAhHQKqWNeLvTgF1fZQoaAZHQJ3h4kzGgjBoB03oA2gIR0CqnLxoZhrndX2UKGgGR0CZGPM6BAfMaAdN6ANoCEdAqqA624NI9XV9lChoBkdAmjfrCSA6MmgHTegDaAhHQKqhPlbNbC91fZQoaAZHQJ8g3+4smOVoB03oA2gIR0CqoczCk43ndX2UKGgGR0CWcYrS3LFGaAdN6ANoCEdAqqivDWK/EnV9lChoBkdAnZ7JXuE252gHTegDaAhHQKquFIeYD1Z1fZQoaAZHQJbnf4wh4dJoB03oA2gIR0Cqr79XLeQ/dX2UKGgGR0CdhDb7CSA6aAdN6ANoCEdAqrCtOCXhO3V9lChoBkdAnetl5jYqXmgHTegDaAhHQKq382wV0tB1fZQoaAZHQJraggTyrghoB03oA2gIR0Cqu3jafzz3dX2UKGgGR0CInSjL0SRKaAdN6ANoCEdAqrx8qYqoZXV9lChoBkdAjEzMv7FbV2gHTegDaAhHQKq9B3K0UoN1fZQoaAZHQJq1BQ+EAYJoB03oA2gIR0Cqw706xPfsdX2UKGgGR0CbCMB1LamGaAdN6ANoCEdAqsfsYXO4X3V9lChoBkdAm3kcifQKKGgHTegDaAhHQKrJko73fyh1fZQoaAZHQJnpbxQSBbxoB03oA2gIR0CqymWUr08OdX2UKGgGR0CavRRbKRuCaAdN6ANoCEdAqtPumDUVjHV9lChoBkdAnGM93B55aGgHTegDaAhHQKrXm+dK/VR1fZQoaAZHQJUDZ2icoYxoB03oA2gIR0Cq2JwKrq+rdX2UKGgGR0B0FD7el9BsaAdN6ANoCEdAqtkkwtapxXV9lChoBkdAm1CH5SFXaWgHTegDaAhHQKrfo5IYm9h1fZQoaAZHQJxjqZtvXK9oB03oA2gIR0Cq4w8s189fdX2UKGgGR0CcfycQAdXDaAdN6ANoCEdAquQXb0voNnV9lChoBkdAm/pM9B8hLWgHTegDaAhHQKrkoD/VAiV1fZQoaAZHQJkTrqbBoEloB03oA2gIR0Cq7p7RnezldX2UKGgGR0CamD1x82JjaAdN6ANoCEdAqvL6JqIrOXV9lChoBkdAmtn3HBDXv2gHTegDaAhHQKrz+ro4dZJ1fZQoaAZHQJo4oTtb9qFoB03oA2gIR0Cq9ITBhx5tdX2UKGgGR0CYgkmGM4tIaAdN6ANoCEdAqvsVlCkXUHV9lChoBkdAmWlH13+uNmgHTegDaAhHQKr+nHsC1Z11fZQoaAZHQH4pAg1WKdhoB03oA2gIR0Cq/5jrZ8KHdX2UKGgGR0Cbda3m3fALaAdN6ANoCEdAqwAksDnvD3V9lChoBkdAnD64njQzDWgHTegDaAhHQKsH2/bCaZx1fZQoaAZHQJg1x9Wp6yBoB03oA2gIR0CrDcndGiHqdX2UKGgGR0CUyXHU+cH4aAdN6ANoCEdAqw99ORDCxnV9lChoBkdAmIxtrftQbmgHTegDaAhHQKsQMNrCWNZ1fZQoaAZHQJf2e0v4/NZoB03oA2gIR0CrFuk+5e7ddX2UKGgGR0Cc+21CgK4QaAdN6ANoCEdAqxpiVyFPBXV9lChoBkdAnY1MN+b3GmgHTegDaAhHQKsbZI+4b0h1fZQoaAZHQJTXyw5eZ5RoB03oA2gIR0CrG+tmL9/CdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e48e7ca7a1dec32bf3449dbf1a540a1cc582e53de493f93debdde08d90618c9
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9352931c4fb6dabdc5d738645c1023864ebaf4b88868abc6b47d57cf90fc671
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e46d54310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e46d543a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e46d54430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e46d544c0>", "_build": "<function ActorCriticPolicy._build at 0x7f7e46d54550>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e46d545e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e46d54670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e46d54700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e46d54790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e46d54820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e46d548b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e46d54940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7e46d51120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675437035235902154, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALK2Ij3iPaG+bmkMPwzHuj+YyFE/srcNP18hBj60sUG/YtaevrHumT8QKHg/lpwFP2rXij4rWra/VbMzPxxuFD953QS+DLyjv+TaJj/P0KU/7T42v0XivT2eLF2/D3u2Pd71cD+RSPu/QhENP6eChb9xh808UDA0v0t0xj4MBd4/LHSJvi/pIr/RJI2+otyovuMCNj9QvDG9lqBHPsI0lr6C8Zm/cHhZPzRRwz4JUtS/qm95v54yJb/VRp0+5eG4P256Jr9PYi+/YLQgv0aQkT/e9XA/kUj7v0IRDT+ngoW/1CdevZaa+j4clQk/i+diPxt7vD3VA7m/yKtlv74Coryddic/wuNEvhHwY78oodc9+lIsv6stiz/sURs/0mkDwH/zCb8g75o/dCTLvmqWGT/M5TW/jUShPQSbtz2CvB8/OP2HvwxnAj9CEQ0/p4KFv5Plor8xBa4/8SlKvRgOmb52s5c/YktPvlzA7b5VOZc/xF03P6Xufr0tP1+/COfdu4hcAz7ZwhA/VR4oPlk2KL+VCaE/4AAlP8hENb4Fw7A+0nEcv9VMtL6+ody+i1htvt71cD8MZwI/QhENPyNvdT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtHDm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATvgQPgAAAAA9Fd2/AAAAALb8rr0AAAAAHGLmPwAAAADkLAy9AAAAAC9X2j8AAAAA1MwPvgAAAABexOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV13sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ5B+7wAAAAA8UrevwAAAAB3fwI+AAAAAHKG2j8AAAAAzo0tPQAAAAAxy+I/AAAAAHP5yb0AAAAAsZznvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHb1TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRXeq9AAAAAEJy+r8AAAAAY0L0PAAAAABpidw/AAAAALECfz0AAAAAWUL1PwAAAACPXoK9AAAAAM+M7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVRkY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQMW/PQAAAAAfCOC/AAAAAPUVkzwAAAAAnB39PwAAAAALlyM9AAAAAFq26j8AAAAAGOGDvQAAAAC8D/K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUV6uLaVUyMAWyUTegDjAF0lEdAqdDHhAGB4HV9lChoBkdAmTLhoh6jWWgHTegDaAhHQKnSXPLxI8R1fZQoaAZHQJpv8lTm4iJoB03oA2gIR0Cp0z8aGYa6dX2UKGgGR0CbxQ1vES/TaAdN6ANoCEdAqd77544ZM3V9lChoBkdAnhHNSqEOAmgHTegDaAhHQKnfYHBUJfJ1fZQoaAZHQJhA3yauwHJoB03oA2gIR0Cp4GGT1TR6dX2UKGgGR0CV4GtdAxBWaAdN6ANoCEdAqeDqItUXHnV9lChoBkdAlkq4UFjd6GgHTegDaAhHQKnqr+0gKWt1fZQoaAZHQJvZ9CCz1K5oB03oA2gIR0Cp6w+bExZddX2UKGgGR0CdZc5NGmUGaAdN6ANoCEdAqewxhz/6wnV9lChoBkdAnDSpvUBnz2gHTegDaAhHQKntADvmYBx1fZQoaAZHQGEWzr3TNMZoB0v3aAhHQKnub1yNn5B1fZQoaAZHQIVs+nhsImhoB03mAWgIR0Cp92DTjNpudX2UKGgGR0CYhE1IRRMwaAdN6ANoCEdAqfrSbYsd1nV9lChoBkdAmVlHxBmf5GgHTegDaAhHQKn70WRA8jl1fZQoaAZHQJj7LYK6WgRoB03oA2gIR0Cp/FyQgcLjdX2UKGgGR0CZtcSqEOAiaAdN6ANoCEdAqgLrgydnTXV9lChoBkdAms25Uo8ZDWgHTegDaAhHQKoGYO7QLNR1fZQoaAZHQJ78amP5pJxoB03oA2gIR0CqB2Dlgc94dX2UKGgGR0CeBR4ZdfLLaAdN6ANoCEdAqgfrNMXaanV9lChoBkdAnAMURODaoWgHTegDaAhHQKoQavllsgx1fZQoaAZHQJoxrUpd8iRoB03oA2gIR0CqFfgrhBJJdX2UKGgGR0CX+gYJ3PiUaAdN6ANoCEdAqhchZ4fOlnV9lChoBkdAmwA+dsi0OWgHTegDaAhHQKoXuEaESM91fZQoaAZHQJgfMsTWXkZoB03oA2gIR0CqHo5FPSDzdX2UKGgGR0CXbn95hSccaAdN6ANoCEdAqiH9GoaUA3V9lChoBkdAmYIO6RQrMGgHTegDaAhHQKoi/HAAQxx1fZQoaAZHQJOuFXgccVBoB03oA2gIR0CqI4nxz7uVdX2UKGgGR0CUQfyvLX+VaAdN6ANoCEdAqiq+tfXws3V9lChoBkdAkuLew5eZ5WgHTegDaAhHQKowDKU3XI51fZQoaAZHQJbWbN0NjLBoB03oA2gIR0CqMbZIH1OCdX2UKGgGR0CTAHJdB0IUaAdN6ANoCEdAqjKVbcGke3V9lChoBkdAlZF0HMUypWgHTegDaAhHQKo5vBInSfF1fZQoaAZHQJtgEf+0gKZoB03oA2gIR0CqPUTF+/g0dX2UKGgGR0Cawb2TxG2DaAdN6ANoCEdAqj5NDneSCHV9lChoBkdAm2zrrxAjZGgHTegDaAhHQKo+1pX6qKh1fZQoaAZHQJr2S+10DEFoB03oA2gIR0CqRZbJfYz0dX2UKGgGR0BqJRGKAJ9iaAdN6ANoCEdAqkmhKDkELnV9lChoBkdAjgSktdzGP2gHTegDaAhHQKpLMQXAM2F1fZQoaAZHQJHcvCyhSLtoB03oA2gIR0CqTBMLncL0dX2UKGgGR0CaglneSB9UaAdN6ANoCEdAqlXqpYLb6HV9lChoBkdAmFBrojfNzWgHTegDaAhHQKpZf0RODap1fZQoaAZHQJpX3DAJswdoB03oA2gIR0CqWoKslsxgdX2UKGgGR0CctSWxyGSIaAdN6ANoCEdAqlsI5T6zmnV9lChoBkdAa5Y580DU3GgHTegDaAhHQKpiw6RyOrB1fZQoaAZHQJbkCLIgeRxoB03oA2gIR0CqaGa2nbZfdX2UKGgGR0CW+9PoFFDwaAdN6ANoCEdAqmqPR1HOKXV9lChoBkdAnrwDjFQ2uWgHTegDaAhHQKprhK9wm3R1fZQoaAZHQJYIJ2W6bvxoB03oA2gIR0CqdZHbRF7VdX2UKGgGR0CVamtxMnJDaAdN6ANoCEdAqnj/5xiobXV9lChoBkdAmuRerU9ZBGgHTegDaAhHQKp6KFA3T/h1fZQoaAZHQJkckse4kNZoB03oA2gIR0CqerTo2XLNdX2UKGgGR0CZf8qB3A2yaAdN6ANoCEdAqoFN5prULHV9lChoBkdAmF3+XVsk6mgHTegDaAhHQKqEvHo5ggJ1fZQoaAZHQJazqI/JNj9oB03oA2gIR0CqhcgMUh3adX2UKGgGR0CYLK+HrQgLaAdN6ANoCEdAqoZQ7YChe3V9lChoBkdAj+ty6UaAF2gHTegDaAhHQKqPX/MGHHp1fZQoaAZHQJcvctnPE89oB03oA2gIR0CqlK92xIJ7dX2UKGgGR0CfB1OGTLW7aAdN6ANoCEdAqpWo/9pAU3V9lChoBkdAnM7vXGwRoWgHTegDaAhHQKqWNeLvTgF1fZQoaAZHQJ3h4kzGgjBoB03oA2gIR0CqnLxoZhrndX2UKGgGR0CZGPM6BAfMaAdN6ANoCEdAqqA624NI9XV9lChoBkdAmjfrCSA6MmgHTegDaAhHQKqhPlbNbC91fZQoaAZHQJ8g3+4smOVoB03oA2gIR0CqoczCk43ndX2UKGgGR0CWcYrS3LFGaAdN6ANoCEdAqqivDWK/EnV9lChoBkdAnZ7JXuE252gHTegDaAhHQKquFIeYD1Z1fZQoaAZHQJbnf4wh4dJoB03oA2gIR0Cqr79XLeQ/dX2UKGgGR0CdhDb7CSA6aAdN6ANoCEdAqrCtOCXhO3V9lChoBkdAnetl5jYqXmgHTegDaAhHQKq382wV0tB1fZQoaAZHQJraggTyrghoB03oA2gIR0Cqu3jafzz3dX2UKGgGR0CInSjL0SRKaAdN6ANoCEdAqrx8qYqoZXV9lChoBkdAjEzMv7FbV2gHTegDaAhHQKq9B3K0UoN1fZQoaAZHQJq1BQ+EAYJoB03oA2gIR0Cqw706xPfsdX2UKGgGR0CbCMB1LamGaAdN6ANoCEdAqsfsYXO4X3V9lChoBkdAm3kcifQKKGgHTegDaAhHQKrJko73fyh1fZQoaAZHQJnpbxQSBbxoB03oA2gIR0CqymWUr08OdX2UKGgGR0CavRRbKRuCaAdN6ANoCEdAqtPumDUVjHV9lChoBkdAnGM93B55aGgHTegDaAhHQKrXm+dK/VR1fZQoaAZHQJUDZ2icoYxoB03oA2gIR0Cq2JwKrq+rdX2UKGgGR0B0FD7el9BsaAdN6ANoCEdAqtkkwtapxXV9lChoBkdAm1CH5SFXaWgHTegDaAhHQKrfo5IYm9h1fZQoaAZHQJxjqZtvXK9oB03oA2gIR0Cq4w8s189fdX2UKGgGR0CcfycQAdXDaAdN6ANoCEdAquQXb0voNnV9lChoBkdAm/pM9B8hLWgHTegDaAhHQKrkoD/VAiV1fZQoaAZHQJkTrqbBoEloB03oA2gIR0Cq7p7RnezldX2UKGgGR0CamD1x82JjaAdN6ANoCEdAqvL6JqIrOXV9lChoBkdAmtn3HBDXv2gHTegDaAhHQKrz+ro4dZJ1fZQoaAZHQJo4oTtb9qFoB03oA2gIR0Cq9ITBhx5tdX2UKGgGR0CYgkmGM4tIaAdN6ANoCEdAqvsVlCkXUHV9lChoBkdAmWlH13+uNmgHTegDaAhHQKr+nHsC1Z11fZQoaAZHQH4pAg1WKdhoB03oA2gIR0Cq/5jrZ8KHdX2UKGgGR0Cbda3m3fALaAdN6ANoCEdAqwAksDnvD3V9lChoBkdAnD64njQzDWgHTegDaAhHQKsH2/bCaZx1fZQoaAZHQJg1x9Wp6yBoB03oA2gIR0CrDcndGiHqdX2UKGgGR0CUyXHU+cH4aAdN6ANoCEdAqw99ORDCxnV9lChoBkdAmIxtrftQbmgHTegDaAhHQKsQMNrCWNZ1fZQoaAZHQJf2e0v4/NZoB03oA2gIR0CrFuk+5e7ddX2UKGgGR0Cc+21CgK4QaAdN6ANoCEdAqxpiVyFPBXV9lChoBkdAnY1MN+b3GmgHTegDaAhHQKsbZI+4b0h1fZQoaAZHQJTXyw5eZ5RoB03oA2gIR0CrG+tmL9/CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1514342af114f0ff2c6935ca715be9448926fdf9e747cb893154c52524a8589e
3
+ size 1071670
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1467.6765108825289, "std_reward": 184.60662442765542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T16:08:53.244074"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:954b1dcffe14d2a3f51bb74bd13785a3966f16435c478cd1ef34c0b1c96d892f
3
+ size 2136