Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1467.68 +/- 184.61
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39296796488c0fffcf1818ef047327d33ca3f8a8087d82b707e2cbd41aa18ffa
|
3 |
+
size 129254
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e46d54310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e46d543a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e46d54430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e46d544c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7e46d54550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7e46d545e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e46d54670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e46d54700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e46d54790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e46d54820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e46d548b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e46d54940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7e46d51120>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675437035235902154,
|
68 |
+
"learning_rate": 0.001,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALK2Ij3iPaG+bmkMPwzHuj+YyFE/srcNP18hBj60sUG/YtaevrHumT8QKHg/lpwFP2rXij4rWra/VbMzPxxuFD953QS+DLyjv+TaJj/P0KU/7T42v0XivT2eLF2/D3u2Pd71cD+RSPu/QhENP6eChb9xh808UDA0v0t0xj4MBd4/LHSJvi/pIr/RJI2+otyovuMCNj9QvDG9lqBHPsI0lr6C8Zm/cHhZPzRRwz4JUtS/qm95v54yJb/VRp0+5eG4P256Jr9PYi+/YLQgv0aQkT/e9XA/kUj7v0IRDT+ngoW/1CdevZaa+j4clQk/i+diPxt7vD3VA7m/yKtlv74Coryddic/wuNEvhHwY78oodc9+lIsv6stiz/sURs/0mkDwH/zCb8g75o/dCTLvmqWGT/M5TW/jUShPQSbtz2CvB8/OP2HvwxnAj9CEQ0/p4KFv5Plor8xBa4/8SlKvRgOmb52s5c/YktPvlzA7b5VOZc/xF03P6Xufr0tP1+/COfdu4hcAz7ZwhA/VR4oPlk2KL+VCaE/4AAlP8hENb4Fw7A+0nEcv9VMtL6+ody+i1htvt71cD8MZwI/QhENPyNvdT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtHDm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATvgQPgAAAAA9Fd2/AAAAALb8rr0AAAAAHGLmPwAAAADkLAy9AAAAAC9X2j8AAAAA1MwPvgAAAABexOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV13sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ5B+7wAAAAA8UrevwAAAAB3fwI+AAAAAHKG2j8AAAAAzo0tPQAAAAAxy+I/AAAAAHP5yb0AAAAAsZznvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHb1TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRXeq9AAAAAEJy+r8AAAAAY0L0PAAAAABpidw/AAAAALECfz0AAAAAWUL1PwAAAACPXoK9AAAAAM+M7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVRkY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQMW/PQAAAAAfCOC/AAAAAPUVkzwAAAAAnB39PwAAAAALlyM9AAAAAFq26j8AAAAAGOGDvQAAAAC8D/K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUV6uLaVUyMAWyUTegDjAF0lEdAqdDHhAGB4HV9lChoBkdAmTLhoh6jWWgHTegDaAhHQKnSXPLxI8R1fZQoaAZHQJpv8lTm4iJoB03oA2gIR0Cp0z8aGYa6dX2UKGgGR0CbxQ1vES/TaAdN6ANoCEdAqd77544ZM3V9lChoBkdAnhHNSqEOAmgHTegDaAhHQKnfYHBUJfJ1fZQoaAZHQJhA3yauwHJoB03oA2gIR0Cp4GGT1TR6dX2UKGgGR0CV4GtdAxBWaAdN6ANoCEdAqeDqItUXHnV9lChoBkdAlkq4UFjd6GgHTegDaAhHQKnqr+0gKWt1fZQoaAZHQJvZ9CCz1K5oB03oA2gIR0Cp6w+bExZddX2UKGgGR0CdZc5NGmUGaAdN6ANoCEdAqewxhz/6wnV9lChoBkdAnDSpvUBnz2gHTegDaAhHQKntADvmYBx1fZQoaAZHQGEWzr3TNMZoB0v3aAhHQKnub1yNn5B1fZQoaAZHQIVs+nhsImhoB03mAWgIR0Cp92DTjNpudX2UKGgGR0CYhE1IRRMwaAdN6ANoCEdAqfrSbYsd1nV9lChoBkdAmVlHxBmf5GgHTegDaAhHQKn70WRA8jl1fZQoaAZHQJj7LYK6WgRoB03oA2gIR0Cp/FyQgcLjdX2UKGgGR0CZtcSqEOAiaAdN6ANoCEdAqgLrgydnTXV9lChoBkdAms25Uo8ZDWgHTegDaAhHQKoGYO7QLNR1fZQoaAZHQJ78amP5pJxoB03oA2gIR0CqB2Dlgc94dX2UKGgGR0CeBR4ZdfLLaAdN6ANoCEdAqgfrNMXaanV9lChoBkdAnAMURODaoWgHTegDaAhHQKoQavllsgx1fZQoaAZHQJoxrUpd8iRoB03oA2gIR0CqFfgrhBJJdX2UKGgGR0CX+gYJ3PiUaAdN6ANoCEdAqhchZ4fOlnV9lChoBkdAmwA+dsi0OWgHTegDaAhHQKoXuEaESM91fZQoaAZHQJgfMsTWXkZoB03oA2gIR0CqHo5FPSDzdX2UKGgGR0CXbn95hSccaAdN6ANoCEdAqiH9GoaUA3V9lChoBkdAmYIO6RQrMGgHTegDaAhHQKoi/HAAQxx1fZQoaAZHQJOuFXgccVBoB03oA2gIR0CqI4nxz7uVdX2UKGgGR0CUQfyvLX+VaAdN6ANoCEdAqiq+tfXws3V9lChoBkdAkuLew5eZ5WgHTegDaAhHQKowDKU3XI51fZQoaAZHQJbWbN0NjLBoB03oA2gIR0CqMbZIH1OCdX2UKGgGR0CTAHJdB0IUaAdN6ANoCEdAqjKVbcGke3V9lChoBkdAlZF0HMUypWgHTegDaAhHQKo5vBInSfF1fZQoaAZHQJtgEf+0gKZoB03oA2gIR0CqPUTF+/g0dX2UKGgGR0Cawb2TxG2DaAdN6ANoCEdAqj5NDneSCHV9lChoBkdAm2zrrxAjZGgHTegDaAhHQKo+1pX6qKh1fZQoaAZHQJr2S+10DEFoB03oA2gIR0CqRZbJfYz0dX2UKGgGR0BqJRGKAJ9iaAdN6ANoCEdAqkmhKDkELnV9lChoBkdAjgSktdzGP2gHTegDaAhHQKpLMQXAM2F1fZQoaAZHQJHcvCyhSLtoB03oA2gIR0CqTBMLncL0dX2UKGgGR0CaglneSB9UaAdN6ANoCEdAqlXqpYLb6HV9lChoBkdAmFBrojfNzWgHTegDaAhHQKpZf0RODap1fZQoaAZHQJpX3DAJswdoB03oA2gIR0CqWoKslsxgdX2UKGgGR0CctSWxyGSIaAdN6ANoCEdAqlsI5T6zmnV9lChoBkdAa5Y580DU3GgHTegDaAhHQKpiw6RyOrB1fZQoaAZHQJbkCLIgeRxoB03oA2gIR0CqaGa2nbZfdX2UKGgGR0CW+9PoFFDwaAdN6ANoCEdAqmqPR1HOKXV9lChoBkdAnrwDjFQ2uWgHTegDaAhHQKprhK9wm3R1fZQoaAZHQJYIJ2W6bvxoB03oA2gIR0CqdZHbRF7VdX2UKGgGR0CVamtxMnJDaAdN6ANoCEdAqnj/5xiobXV9lChoBkdAmuRerU9ZBGgHTegDaAhHQKp6KFA3T/h1fZQoaAZHQJkckse4kNZoB03oA2gIR0CqerTo2XLNdX2UKGgGR0CZf8qB3A2yaAdN6ANoCEdAqoFN5prULHV9lChoBkdAmF3+XVsk6mgHTegDaAhHQKqEvHo5ggJ1fZQoaAZHQJazqI/JNj9oB03oA2gIR0CqhcgMUh3adX2UKGgGR0CYLK+HrQgLaAdN6ANoCEdAqoZQ7YChe3V9lChoBkdAj+ty6UaAF2gHTegDaAhHQKqPX/MGHHp1fZQoaAZHQJcvctnPE89oB03oA2gIR0CqlK92xIJ7dX2UKGgGR0CfB1OGTLW7aAdN6ANoCEdAqpWo/9pAU3V9lChoBkdAnM7vXGwRoWgHTegDaAhHQKqWNeLvTgF1fZQoaAZHQJ3h4kzGgjBoB03oA2gIR0CqnLxoZhrndX2UKGgGR0CZGPM6BAfMaAdN6ANoCEdAqqA624NI9XV9lChoBkdAmjfrCSA6MmgHTegDaAhHQKqhPlbNbC91fZQoaAZHQJ8g3+4smOVoB03oA2gIR0CqoczCk43ndX2UKGgGR0CWcYrS3LFGaAdN6ANoCEdAqqivDWK/EnV9lChoBkdAnZ7JXuE252gHTegDaAhHQKquFIeYD1Z1fZQoaAZHQJbnf4wh4dJoB03oA2gIR0Cqr79XLeQ/dX2UKGgGR0CdhDb7CSA6aAdN6ANoCEdAqrCtOCXhO3V9lChoBkdAnetl5jYqXmgHTegDaAhHQKq382wV0tB1fZQoaAZHQJraggTyrghoB03oA2gIR0Cqu3jafzz3dX2UKGgGR0CInSjL0SRKaAdN6ANoCEdAqrx8qYqoZXV9lChoBkdAjEzMv7FbV2gHTegDaAhHQKq9B3K0UoN1fZQoaAZHQJq1BQ+EAYJoB03oA2gIR0Cqw706xPfsdX2UKGgGR0CbCMB1LamGaAdN6ANoCEdAqsfsYXO4X3V9lChoBkdAm3kcifQKKGgHTegDaAhHQKrJko73fyh1fZQoaAZHQJnpbxQSBbxoB03oA2gIR0CqymWUr08OdX2UKGgGR0CavRRbKRuCaAdN6ANoCEdAqtPumDUVjHV9lChoBkdAnGM93B55aGgHTegDaAhHQKrXm+dK/VR1fZQoaAZHQJUDZ2icoYxoB03oA2gIR0Cq2JwKrq+rdX2UKGgGR0B0FD7el9BsaAdN6ANoCEdAqtkkwtapxXV9lChoBkdAm1CH5SFXaWgHTegDaAhHQKrfo5IYm9h1fZQoaAZHQJxjqZtvXK9oB03oA2gIR0Cq4w8s189fdX2UKGgGR0CcfycQAdXDaAdN6ANoCEdAquQXb0voNnV9lChoBkdAm/pM9B8hLWgHTegDaAhHQKrkoD/VAiV1fZQoaAZHQJkTrqbBoEloB03oA2gIR0Cq7p7RnezldX2UKGgGR0CamD1x82JjaAdN6ANoCEdAqvL6JqIrOXV9lChoBkdAmtn3HBDXv2gHTegDaAhHQKrz+ro4dZJ1fZQoaAZHQJo4oTtb9qFoB03oA2gIR0Cq9ITBhx5tdX2UKGgGR0CYgkmGM4tIaAdN6ANoCEdAqvsVlCkXUHV9lChoBkdAmWlH13+uNmgHTegDaAhHQKr+nHsC1Z11fZQoaAZHQH4pAg1WKdhoB03oA2gIR0Cq/5jrZ8KHdX2UKGgGR0Cbda3m3fALaAdN6ANoCEdAqwAksDnvD3V9lChoBkdAnD64njQzDWgHTegDaAhHQKsH2/bCaZx1fZQoaAZHQJg1x9Wp6yBoB03oA2gIR0CrDcndGiHqdX2UKGgGR0CUyXHU+cH4aAdN6ANoCEdAqw99ORDCxnV9lChoBkdAmIxtrftQbmgHTegDaAhHQKsQMNrCWNZ1fZQoaAZHQJf2e0v4/NZoB03oA2gIR0CrFuk+5e7ddX2UKGgGR0Cc+21CgK4QaAdN6ANoCEdAqxpiVyFPBXV9lChoBkdAnY1MN+b3GmgHTegDaAhHQKsbZI+4b0h1fZQoaAZHQJTXyw5eZ5RoB03oA2gIR0CrG+tmL9/CdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e48e7ca7a1dec32bf3449dbf1a540a1cc582e53de493f93debdde08d90618c9
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9352931c4fb6dabdc5d738645c1023864ebaf4b88868abc6b47d57cf90fc671
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e46d54310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e46d543a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e46d54430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e46d544c0>", "_build": "<function ActorCriticPolicy._build at 0x7f7e46d54550>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e46d545e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e46d54670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e46d54700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e46d54790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e46d54820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e46d548b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e46d54940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7e46d51120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675437035235902154, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALK2Ij3iPaG+bmkMPwzHuj+YyFE/srcNP18hBj60sUG/YtaevrHumT8QKHg/lpwFP2rXij4rWra/VbMzPxxuFD953QS+DLyjv+TaJj/P0KU/7T42v0XivT2eLF2/D3u2Pd71cD+RSPu/QhENP6eChb9xh808UDA0v0t0xj4MBd4/LHSJvi/pIr/RJI2+otyovuMCNj9QvDG9lqBHPsI0lr6C8Zm/cHhZPzRRwz4JUtS/qm95v54yJb/VRp0+5eG4P256Jr9PYi+/YLQgv0aQkT/e9XA/kUj7v0IRDT+ngoW/1CdevZaa+j4clQk/i+diPxt7vD3VA7m/yKtlv74Coryddic/wuNEvhHwY78oodc9+lIsv6stiz/sURs/0mkDwH/zCb8g75o/dCTLvmqWGT/M5TW/jUShPQSbtz2CvB8/OP2HvwxnAj9CEQ0/p4KFv5Plor8xBa4/8SlKvRgOmb52s5c/YktPvlzA7b5VOZc/xF03P6Xufr0tP1+/COfdu4hcAz7ZwhA/VR4oPlk2KL+VCaE/4AAlP8hENb4Fw7A+0nEcv9VMtL6+ody+i1htvt71cD8MZwI/QhENPyNvdT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtHDm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATvgQPgAAAAA9Fd2/AAAAALb8rr0AAAAAHGLmPwAAAADkLAy9AAAAAC9X2j8AAAAA1MwPvgAAAABexOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV13sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ5B+7wAAAAA8UrevwAAAAB3fwI+AAAAAHKG2j8AAAAAzo0tPQAAAAAxy+I/AAAAAHP5yb0AAAAAsZznvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHb1TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRXeq9AAAAAEJy+r8AAAAAY0L0PAAAAABpidw/AAAAALECfz0AAAAAWUL1PwAAAACPXoK9AAAAAM+M7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVRkY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQMW/PQAAAAAfCOC/AAAAAPUVkzwAAAAAnB39PwAAAAALlyM9AAAAAFq26j8AAAAAGOGDvQAAAAC8D/K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUV6uLaVUyMAWyUTegDjAF0lEdAqdDHhAGB4HV9lChoBkdAmTLhoh6jWWgHTegDaAhHQKnSXPLxI8R1fZQoaAZHQJpv8lTm4iJoB03oA2gIR0Cp0z8aGYa6dX2UKGgGR0CbxQ1vES/TaAdN6ANoCEdAqd77544ZM3V9lChoBkdAnhHNSqEOAmgHTegDaAhHQKnfYHBUJfJ1fZQoaAZHQJhA3yauwHJoB03oA2gIR0Cp4GGT1TR6dX2UKGgGR0CV4GtdAxBWaAdN6ANoCEdAqeDqItUXHnV9lChoBkdAlkq4UFjd6GgHTegDaAhHQKnqr+0gKWt1fZQoaAZHQJvZ9CCz1K5oB03oA2gIR0Cp6w+bExZddX2UKGgGR0CdZc5NGmUGaAdN6ANoCEdAqewxhz/6wnV9lChoBkdAnDSpvUBnz2gHTegDaAhHQKntADvmYBx1fZQoaAZHQGEWzr3TNMZoB0v3aAhHQKnub1yNn5B1fZQoaAZHQIVs+nhsImhoB03mAWgIR0Cp92DTjNpudX2UKGgGR0CYhE1IRRMwaAdN6ANoCEdAqfrSbYsd1nV9lChoBkdAmVlHxBmf5GgHTegDaAhHQKn70WRA8jl1fZQoaAZHQJj7LYK6WgRoB03oA2gIR0Cp/FyQgcLjdX2UKGgGR0CZtcSqEOAiaAdN6ANoCEdAqgLrgydnTXV9lChoBkdAms25Uo8ZDWgHTegDaAhHQKoGYO7QLNR1fZQoaAZHQJ78amP5pJxoB03oA2gIR0CqB2Dlgc94dX2UKGgGR0CeBR4ZdfLLaAdN6ANoCEdAqgfrNMXaanV9lChoBkdAnAMURODaoWgHTegDaAhHQKoQavllsgx1fZQoaAZHQJoxrUpd8iRoB03oA2gIR0CqFfgrhBJJdX2UKGgGR0CX+gYJ3PiUaAdN6ANoCEdAqhchZ4fOlnV9lChoBkdAmwA+dsi0OWgHTegDaAhHQKoXuEaESM91fZQoaAZHQJgfMsTWXkZoB03oA2gIR0CqHo5FPSDzdX2UKGgGR0CXbn95hSccaAdN6ANoCEdAqiH9GoaUA3V9lChoBkdAmYIO6RQrMGgHTegDaAhHQKoi/HAAQxx1fZQoaAZHQJOuFXgccVBoB03oA2gIR0CqI4nxz7uVdX2UKGgGR0CUQfyvLX+VaAdN6ANoCEdAqiq+tfXws3V9lChoBkdAkuLew5eZ5WgHTegDaAhHQKowDKU3XI51fZQoaAZHQJbWbN0NjLBoB03oA2gIR0CqMbZIH1OCdX2UKGgGR0CTAHJdB0IUaAdN6ANoCEdAqjKVbcGke3V9lChoBkdAlZF0HMUypWgHTegDaAhHQKo5vBInSfF1fZQoaAZHQJtgEf+0gKZoB03oA2gIR0CqPUTF+/g0dX2UKGgGR0Cawb2TxG2DaAdN6ANoCEdAqj5NDneSCHV9lChoBkdAm2zrrxAjZGgHTegDaAhHQKo+1pX6qKh1fZQoaAZHQJr2S+10DEFoB03oA2gIR0CqRZbJfYz0dX2UKGgGR0BqJRGKAJ9iaAdN6ANoCEdAqkmhKDkELnV9lChoBkdAjgSktdzGP2gHTegDaAhHQKpLMQXAM2F1fZQoaAZHQJHcvCyhSLtoB03oA2gIR0CqTBMLncL0dX2UKGgGR0CaglneSB9UaAdN6ANoCEdAqlXqpYLb6HV9lChoBkdAmFBrojfNzWgHTegDaAhHQKpZf0RODap1fZQoaAZHQJpX3DAJswdoB03oA2gIR0CqWoKslsxgdX2UKGgGR0CctSWxyGSIaAdN6ANoCEdAqlsI5T6zmnV9lChoBkdAa5Y580DU3GgHTegDaAhHQKpiw6RyOrB1fZQoaAZHQJbkCLIgeRxoB03oA2gIR0CqaGa2nbZfdX2UKGgGR0CW+9PoFFDwaAdN6ANoCEdAqmqPR1HOKXV9lChoBkdAnrwDjFQ2uWgHTegDaAhHQKprhK9wm3R1fZQoaAZHQJYIJ2W6bvxoB03oA2gIR0CqdZHbRF7VdX2UKGgGR0CVamtxMnJDaAdN6ANoCEdAqnj/5xiobXV9lChoBkdAmuRerU9ZBGgHTegDaAhHQKp6KFA3T/h1fZQoaAZHQJkckse4kNZoB03oA2gIR0CqerTo2XLNdX2UKGgGR0CZf8qB3A2yaAdN6ANoCEdAqoFN5prULHV9lChoBkdAmF3+XVsk6mgHTegDaAhHQKqEvHo5ggJ1fZQoaAZHQJazqI/JNj9oB03oA2gIR0CqhcgMUh3adX2UKGgGR0CYLK+HrQgLaAdN6ANoCEdAqoZQ7YChe3V9lChoBkdAj+ty6UaAF2gHTegDaAhHQKqPX/MGHHp1fZQoaAZHQJcvctnPE89oB03oA2gIR0CqlK92xIJ7dX2UKGgGR0CfB1OGTLW7aAdN6ANoCEdAqpWo/9pAU3V9lChoBkdAnM7vXGwRoWgHTegDaAhHQKqWNeLvTgF1fZQoaAZHQJ3h4kzGgjBoB03oA2gIR0CqnLxoZhrndX2UKGgGR0CZGPM6BAfMaAdN6ANoCEdAqqA624NI9XV9lChoBkdAmjfrCSA6MmgHTegDaAhHQKqhPlbNbC91fZQoaAZHQJ8g3+4smOVoB03oA2gIR0CqoczCk43ndX2UKGgGR0CWcYrS3LFGaAdN6ANoCEdAqqivDWK/EnV9lChoBkdAnZ7JXuE252gHTegDaAhHQKquFIeYD1Z1fZQoaAZHQJbnf4wh4dJoB03oA2gIR0Cqr79XLeQ/dX2UKGgGR0CdhDb7CSA6aAdN6ANoCEdAqrCtOCXhO3V9lChoBkdAnetl5jYqXmgHTegDaAhHQKq382wV0tB1fZQoaAZHQJraggTyrghoB03oA2gIR0Cqu3jafzz3dX2UKGgGR0CInSjL0SRKaAdN6ANoCEdAqrx8qYqoZXV9lChoBkdAjEzMv7FbV2gHTegDaAhHQKq9B3K0UoN1fZQoaAZHQJq1BQ+EAYJoB03oA2gIR0Cqw706xPfsdX2UKGgGR0CbCMB1LamGaAdN6ANoCEdAqsfsYXO4X3V9lChoBkdAm3kcifQKKGgHTegDaAhHQKrJko73fyh1fZQoaAZHQJnpbxQSBbxoB03oA2gIR0CqymWUr08OdX2UKGgGR0CavRRbKRuCaAdN6ANoCEdAqtPumDUVjHV9lChoBkdAnGM93B55aGgHTegDaAhHQKrXm+dK/VR1fZQoaAZHQJUDZ2icoYxoB03oA2gIR0Cq2JwKrq+rdX2UKGgGR0B0FD7el9BsaAdN6ANoCEdAqtkkwtapxXV9lChoBkdAm1CH5SFXaWgHTegDaAhHQKrfo5IYm9h1fZQoaAZHQJxjqZtvXK9oB03oA2gIR0Cq4w8s189fdX2UKGgGR0CcfycQAdXDaAdN6ANoCEdAquQXb0voNnV9lChoBkdAm/pM9B8hLWgHTegDaAhHQKrkoD/VAiV1fZQoaAZHQJkTrqbBoEloB03oA2gIR0Cq7p7RnezldX2UKGgGR0CamD1x82JjaAdN6ANoCEdAqvL6JqIrOXV9lChoBkdAmtn3HBDXv2gHTegDaAhHQKrz+ro4dZJ1fZQoaAZHQJo4oTtb9qFoB03oA2gIR0Cq9ITBhx5tdX2UKGgGR0CYgkmGM4tIaAdN6ANoCEdAqvsVlCkXUHV9lChoBkdAmWlH13+uNmgHTegDaAhHQKr+nHsC1Z11fZQoaAZHQH4pAg1WKdhoB03oA2gIR0Cq/5jrZ8KHdX2UKGgGR0Cbda3m3fALaAdN6ANoCEdAqwAksDnvD3V9lChoBkdAnD64njQzDWgHTegDaAhHQKsH2/bCaZx1fZQoaAZHQJg1x9Wp6yBoB03oA2gIR0CrDcndGiHqdX2UKGgGR0CUyXHU+cH4aAdN6ANoCEdAqw99ORDCxnV9lChoBkdAmIxtrftQbmgHTegDaAhHQKsQMNrCWNZ1fZQoaAZHQJf2e0v4/NZoB03oA2gIR0CrFuk+5e7ddX2UKGgGR0Cc+21CgK4QaAdN6ANoCEdAqxpiVyFPBXV9lChoBkdAnY1MN+b3GmgHTegDaAhHQKsbZI+4b0h1fZQoaAZHQJTXyw5eZ5RoB03oA2gIR0CrG+tmL9/CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1514342af114f0ff2c6935ca715be9448926fdf9e747cb893154c52524a8589e
|
3 |
+
size 1071670
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1467.6765108825289, "std_reward": 184.60662442765542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T16:08:53.244074"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:954b1dcffe14d2a3f51bb74bd13785a3966f16435c478cd1ef34c0b1c96d892f
|
3 |
+
size 2136
|