File size: 15,982 Bytes
097131e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed77f421f0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fed77f3b990>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1675432449669015148,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADzDHP4+wsj+qnH+/tjyAvvWlGb/NY6W+4qLOv/ESoD8GFK4+7qWGP9ETL7/Enq+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[0.4730888  0.00723645 0.5858602 ]\n [0.4730888  0.00723645 0.5858602 ]\n [0.4730888  0.00723645 0.5858602 ]\n [0.4730888  0.00723645 0.5858602 ]]",
        "desired_goal": "[[ 1.5561541   1.3960131  -0.99848425]\n [-0.2504632  -0.60018855 -0.32302704]\n [-1.6143458   1.250578    0.33999652]\n [ 1.0519388  -0.6838961  -1.3720326 ]]",
        "observation": "[[ 4.7308880e-01  7.2364477e-03  5.8586019e-01 -8.6655645e-03\n  -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01  7.2364477e-03  5.8586019e-01 -8.6655645e-03\n  -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01  7.2364477e-03  5.8586019e-01 -8.6655645e-03\n  -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01  7.2364477e-03  5.8586019e-01 -8.6655645e-03\n  -2.0044215e-03 -2.8698921e-04]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2JgSPYRtVD3u1oo9zUBfPKlf5b39KV4+CWQRvvWRFb4fTtw9l3QTPTHAij3JWI89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[ 0.03579029  0.05186225  0.06779276]\n [ 0.01362629 -0.11199886  0.21695705]\n [-0.14198317 -0.1460646   0.10757088]\n [ 0.03599986  0.06774939  0.06999356]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGyrG+ZvgGcCUhpRSlIwBbJRLMowBdJRHQKYURC4z7/J1fZQoaAZoCWgPQwhB8s6hDIURwJSGlFKUaBVLMmgWR0CmFAt5MURGdX2UKGgGaAloD0MIkncOZajK/7+UhpRSlGgVSzJoFkdAphPRtDUmUnV9lChoBmgJaA9DCIfCZ+vgYP2/lIaUUpRoFUsyaBZHQKYTlWdVea91fZQoaAZoCWgPQwj2Rq0wfQ8SwJSGlFKUaBVLMmgWR0CmFWOrZJ05dX2UKGgGaAloD0MIJ0pCIm1j9r+UhpRSlGgVSzJoFkdAphUqzJIUanV9lChoBmgJaA9DCFQZxt0g2g3AlIaUUpRoFUsyaBZHQKYU8VN5+ph1fZQoaAZoCWgPQwh3SDFAognvv5SGlFKUaBVLMmgWR0CmFLTZHuqndX2UKGgGaAloD0MImKYIcHoHEMCUhpRSlGgVSzJoFkdAphZr9KmKqHV9lChoBmgJaA9DCHkiiPNwAvO/lIaUUpRoFUsyaBZHQKYWMtbs4T91fZQoaAZoCWgPQwhgH5268tkDwJSGlFKUaBVLMmgWR0CmFflAeJYUdX2UKGgGaAloD0MIpfPhWYIM/b+UhpRSlGgVSzJoFkdAphW8yeqaPXV9lChoBmgJaA9DCGt/Z3v0BgnAlIaUUpRoFUsyaBZHQKYXbM6ij+J1fZQoaAZoCWgPQwgei21S0Rj1v5SGlFKUaBVLMmgWR0CmFzPRzBAOdX2UKGgGaAloD0MI/YUeMXreEsCUhpRSlGgVSzJoFkdAphb6VII4VHV9lChoBmgJaA9DCHke3J21ewnAlIaUUpRoFUsyaBZHQKYWvdznzQN1fZQoaAZoCWgPQwj7PbFOle8IwJSGlFKUaBVLMmgWR0CmGGNdZ7ojdX2UKGgGaAloD0MI0uRiDKzj9r+UhpRSlGgVSzJoFkdAphgqYsunM3V9lChoBmgJaA9DCAWm07oNigfAlIaUUpRoFUsyaBZHQKYX8IldC3R1fZQoaAZoCWgPQwhlxAWgUbr1v5SGlFKUaBVLMmgWR0CmF7PeP7vYdX2UKGgGaAloD0MI9Pv+zYvzCcCUhpRSlGgVSzJoFkdAphlKs0YTCnV9lChoBmgJaA9DCM+j4v+OyAzAlIaUUpRoFUsyaBZHQKYZEaOPvKF1fZQoaAZoCWgPQwgEN1K2SNoJwJSGlFKUaBVLMmgWR0CmGNgGB4D+dX2UKGgGaAloD0MIMH+FzJWhAsCUhpRSlGgVSzJoFkdAphibO5avBHV9lChoBmgJaA9DCAd7E0NywhLAlIaUUpRoFUsyaBZHQKYaRZrYXft1fZQoaAZoCWgPQwjXijbHuY0AwJSGlFKUaBVLMmgWR0CmGgxrzoU0dX2UKGgGaAloD0MImBk2yvrtBcCUhpRSlGgVSzJoFkdAphnSjYZl4HV9lChoBmgJaA9DCIgRwqONY/y/lIaUUpRoFUsyaBZHQKYZlgZTAFh1fZQoaAZoCWgPQwh1AwXeyYcQwJSGlFKUaBVLMmgWR0CmGzyf16E8dX2UKGgGaAloD0MI/7Pmx1+a/b+UhpRSlGgVSzJoFkdAphsDtoi9qXV9lChoBmgJaA9DCNDyPLg76/q/lIaUUpRoFUsyaBZHQKYayfdRBNV1fZQoaAZoCWgPQwjYKsHicCYAwJSGlFKUaBVLMmgWR0CmGo04rBj4dX2UKGgGaAloD0MI5dTOMLUlCsCUhpRSlGgVSzJoFkdAphw8uL74z3V9lChoBmgJaA9DCA8J3/sbtArAlIaUUpRoFUsyaBZHQKYcA8IzFdd1fZQoaAZoCWgPQwhaR1UTRF0JwJSGlFKUaBVLMmgWR0CmG8omois5dX2UKGgGaAloD0MIpyVWRiN/B8CUhpRSlGgVSzJoFkdAphuNh/iHZnV9lChoBmgJaA9DCH9t/fSftQDAlIaUUpRoFUsyaBZHQKYdZH4oJAt1fZQoaAZoCWgPQwhgj4mUZrP0v5SGlFKUaBVLMmgWR0CmHSu3DvVmdX2UKGgGaAloD0MIVvXyO03GA8CUhpRSlGgVSzJoFkdAphzx9Vmz0HV9lChoBmgJaA9DCL3jFB3J1RHAlIaUUpRoFUsyaBZHQKYctYraufV1fZQoaAZoCWgPQwjtmpDWGHQQwJSGlFKUaBVLMmgWR0CmHm0H6dlNdX2UKGgGaAloD0MIyO2XT1ZcF8CUhpRSlGgVSzJoFkdAph40NayKN3V9lChoBmgJaA9DCCbg10gSlBDAlIaUUpRoFUsyaBZHQKYd+pDNQj51fZQoaAZoCWgPQwh+w0SDFLwKwJSGlFKUaBVLMmgWR0CmHb349HMEdX2UKGgGaAloD0MIYcQ+ARTjBsCUhpRSlGgVSzJoFkdAph+Cx/ustHV9lChoBmgJaA9DCHbj3ZGxegjAlIaUUpRoFUsyaBZHQKYfSfxMFll1fZQoaAZoCWgPQwgBFY4glUINwJSGlFKUaBVLMmgWR0CmHxBUR3/xdX2UKGgGaAloD0MIxOi5ha4EEsCUhpRSlGgVSzJoFkdAph7T1ZkkKXV9lChoBmgJaA9DCNf34SAhyvq/lIaUUpRoFUsyaBZHQKYgsq6vq1R1fZQoaAZoCWgPQwj9TShEwCH9v5SGlFKUaBVLMmgWR0CmIHnbypaSdX2UKGgGaAloD0MIcM6I0t7g/b+UhpRSlGgVSzJoFkdApiBA++ueSXV9lChoBmgJaA9DCOiC+pY5vQTAlIaUUpRoFUsyaBZHQKYgBLPD50t1fZQoaAZoCWgPQwgHms+523UAwJSGlFKUaBVLMmgWR0CmIcmsvIwNdX2UKGgGaAloD0MICRUcXhARD8CUhpRSlGgVSzJoFkdApiGQv38GcHV9lChoBmgJaA9DCK5kx0YgPhPAlIaUUpRoFUsyaBZHQKYhVyJ9Aop1fZQoaAZoCWgPQwh48umxLcMDwJSGlFKUaBVLMmgWR0CmIRqZ2IO6dX2UKGgGaAloD0MIpd3oYz7AE8CUhpRSlGgVSzJoFkdApiLp0Qsf73V9lChoBmgJaA9DCNv9KsB3+wnAlIaUUpRoFUsyaBZHQKYisQPqcEx1fZQoaAZoCWgPQwjr/rEQHcITwJSGlFKUaBVLMmgWR0CmInen62v0dX2UKGgGaAloD0MIuVSlLa7x/L+UhpRSlGgVSzJoFkdApiI7KDCgsnV9lChoBmgJaA9DCIrKhjWVZQXAlIaUUpRoFUsyaBZHQKYkAoOQQtl1fZQoaAZoCWgPQwjn/BTHgdf4v5SGlFKUaBVLMmgWR0CmI8mY0EX+dX2UKGgGaAloD0MIfH2tS40QAcCUhpRSlGgVSzJoFkdApiOP+qBEr3V9lChoBmgJaA9DCDaVRWEXRQvAlIaUUpRoFUsyaBZHQKYjU163RXx1fZQoaAZoCWgPQwivRKD6BzEGwJSGlFKUaBVLMmgWR0CmJQDoQnQZdX2UKGgGaAloD0MILubnhqaMAsCUhpRSlGgVSzJoFkdApiTHvv0AcXV9lChoBmgJaA9DCJViR+NQnwfAlIaUUpRoFUsyaBZHQKYkjedkJ8h1fZQoaAZoCWgPQwjZmNcRh8wHwJSGlFKUaBVLMmgWR0CmJFE4NqgzdX2UKGgGaAloD0MILskBu5pcD8CUhpRSlGgVSzJoFkdApibORvFWGXV9lChoBmgJaA9DCKLQsu4fC/6/lIaUUpRoFUsyaBZHQKYmljpcHGF1fZQoaAZoCWgPQwiO6QlLPCAFwJSGlFKUaBVLMmgWR0CmJl2912aEdX2UKGgGaAloD0MIoUrNHmjlAMCUhpRSlGgVSzJoFkdApiYjVvuPWHV9lChoBmgJaA9DCO4jtybdFv+/lIaUUpRoFUsyaBZHQKYoo0VrRBx1fZQoaAZoCWgPQwgxQKIJFHEGwJSGlFKUaBVLMmgWR0CmKGsa86FNdX2UKGgGaAloD0MI1VxuMNSBBMCUhpRSlGgVSzJoFkdApigymygPE3V9lChoBmgJaA9DCFRU/Urnw/6/lIaUUpRoFUsyaBZHQKYn91EmY0F1fZQoaAZoCWgPQwgSFD/G3HX/v5SGlFKUaBVLMmgWR0CmKm/51vETdX2UKGgGaAloD0MI2ozTEFVYA8CUhpRSlGgVSzJoFkdApio4CEHt4XV9lChoBmgJaA9DCN+I7lnXaArAlIaUUpRoFUsyaBZHQKYp/szEaVF1fZQoaAZoCWgPQwhv05/9SDECwJSGlFKUaBVLMmgWR0CmKcMwUQCkdX2UKGgGaAloD0MIqio0EMuGAcCUhpRSlGgVSzJoFkdApiw3yqdYn3V9lChoBmgJaA9DCEJ6ihwiTgfAlIaUUpRoFUsyaBZHQKYr/yuIRAd1fZQoaAZoCWgPQwh07QvohTsCwJSGlFKUaBVLMmgWR0CmK8Z7HAARdX2UKGgGaAloD0MIlZ1+UBdpDMCUhpRSlGgVSzJoFkdApiuKQ3gk1XV9lChoBmgJaA9DCIdu9gfKbQPAlIaUUpRoFUsyaBZHQKYuGLKFIup1fZQoaAZoCWgPQwhwYd14d4QMwJSGlFKUaBVLMmgWR0CmLeB5X2dvdX2UKGgGaAloD0MI7s9FQ8YDAsCUhpRSlGgVSzJoFkdApi2n8baRIXV9lChoBmgJaA9DCBAEyNCxsxPAlIaUUpRoFUsyaBZHQKYtbGNrCWN1fZQoaAZoCWgPQwhDHsGNlI0AwJSGlFKUaBVLMmgWR0CmL0ois4kvdX2UKGgGaAloD0MI2xZlNsjUEMCUhpRSlGgVSzJoFkdApi8SAz544nV9lChoBmgJaA9DCCYapOAp5P+/lIaUUpRoFUsyaBZHQKYu2S7oSth1fZQoaAZoCWgPQwjAriZPWQ0EwJSGlFKUaBVLMmgWR0CmLp1RtP56dX2UKGgGaAloD0MIgnAFFOpp+L+UhpRSlGgVSzJoFkdApjBl4eLeh3V9lChoBmgJaA9DCHOfHAWIQgPAlIaUUpRoFUsyaBZHQKYwLOGj9GZ1fZQoaAZoCWgPQwgKuVLPgpACwJSGlFKUaBVLMmgWR0CmL/M189fUdX2UKGgGaAloD0MItvRoqifzBsCUhpRSlGgVSzJoFkdApi+2m78Nx3V9lChoBmgJaA9DCNdR1QRRd/e/lIaUUpRoFUsyaBZHQKYxX5Y5ksl1fZQoaAZoCWgPQwi6aMh4lAoJwJSGlFKUaBVLMmgWR0CmMSa2v0ROdX2UKGgGaAloD0MIv2TjwRZbD8CUhpRSlGgVSzJoFkdApjDtK02LpHV9lChoBmgJaA9DCESLbOf7SQLAlIaUUpRoFUsyaBZHQKYwsFQl8gJ1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}