pnr-svc's picture
End of training
a7253f4 verified
---
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: distilbert-ner-lorafinetune-runs-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-ner-lorafinetune-runs-v1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0735
- Precision: 0.9638
- Recall: 0.9778
- F1: 0.9708
- Accuracy: 0.9888
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0808 | 1.0 | 2643 | 0.1186 | 0.9399 | 0.9629 | 0.9513 | 0.9818 |
| 0.0648 | 2.0 | 5286 | 0.0807 | 0.9556 | 0.9736 | 0.9645 | 0.9868 |
| 0.0366 | 3.0 | 7929 | 0.0761 | 0.9611 | 0.9770 | 0.9690 | 0.9883 |
| 0.0306 | 4.0 | 10572 | 0.0735 | 0.9638 | 0.9778 | 0.9708 | 0.9888 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.43.3
- Pytorch 2.4.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1