pnr-svc commited on
Commit
a6a0301
1 Parent(s): 80681fe

End of training

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: FacebookAI/roberta-base
3
+ library_name: peft
4
+ license: mit
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ tags:
11
+ - generated_from_trainer
12
+ model-index:
13
+ - name: roberta-base-ner-lorafinetune-runs-16-32
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # roberta-base-ner-lorafinetune-runs-16-32
21
+
22
+ This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1258
25
+ - Precision: 0.9485
26
+ - Recall: 0.9697
27
+ - F1: 0.9590
28
+ - Accuracy: 0.9843
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0004
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 3
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | 0.1172 | 1.0 | 2643 | 0.1473 | 0.9389 | 0.9581 | 0.9484 | 0.9779 |
61
+ | 0.1027 | 2.0 | 5286 | 0.1273 | 0.9458 | 0.9670 | 0.9563 | 0.9827 |
62
+ | 0.0875 | 3.0 | 7929 | 0.1258 | 0.9485 | 0.9697 | 0.9590 | 0.9843 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - PEFT 0.12.0
68
+ - Transformers 4.43.3
69
+ - Pytorch 2.4.1+cu121
70
+ - Datasets 2.20.0
71
+ - Tokenizers 0.19.1