metadata
base_model: FacebookAI/roberta-base
library_name: peft
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: roberta-base-ner-lorafinetune-runs-64-1
results: []
roberta-base-ner-lorafinetune-runs-64-1
This model is a fine-tuned version of FacebookAI/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1432
- Precision: 0.9517
- Recall: 0.9598
- F1: 0.9557
- Accuracy: 0.9787
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.135 | 1.0 | 2643 | 0.1693 | 0.9564 | 0.9499 | 0.9531 | 0.9741 |
0.1302 | 2.0 | 5286 | 0.1486 | 0.9531 | 0.9571 | 0.9551 | 0.9776 |
0.1149 | 3.0 | 7929 | 0.1432 | 0.9517 | 0.9598 | 0.9557 | 0.9787 |
Framework versions
- PEFT 0.12.0
- Transformers 4.43.3
- Pytorch 2.4.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1