poipiii commited on
Commit
662dbef
·
1 Parent(s): b00902f

test in latnent upcale

Browse files
Files changed (1) hide show
  1. pipeline.py +15 -7
pipeline.py CHANGED
@@ -848,13 +848,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
848
  print("after first step denoise latents")
849
  # print(latents)
850
  print(latents.shape)
851
- latents = torch.nn.functional.interpolate(
852
  latents, size=(int(height*resize_scale)//8, int(width*resize_scale)//8))
853
 
854
  for i, t in enumerate(self.progress_bar(timesteps)):
855
  # expand the latents if we are doing classifier free guidance
856
  latent_model_input = torch.cat(
857
- [latents] * 2) if do_classifier_free_guidance else latents
858
  print("latent_model_input 2nd step")
859
  # print(latent_model_input)
860
  print(latent_model_input.shape)
@@ -864,6 +864,10 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
864
 
865
  latent_model_input = self.scheduler.scale_model_input(
866
  latent_model_input, t)
 
 
 
 
867
  print("latent_model_input after scheduler")
868
  # print(latent_model_input)
869
  print(latent_model_input.shape)
@@ -879,26 +883,30 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
879
  noise_pred = noise_pred_uncond + guidance_scale * \
880
  (noise_pred_text - noise_pred_uncond)
881
 
 
882
  # compute the previous noisy sample x_t -> x_t-1
883
- latents = self.scheduler.step(
884
- noise_pred, t, latents, **extra_step_kwargs).prev_sample
885
 
 
 
886
  if mask is not None:
887
  # masking
888
  init_latents_proper = self.scheduler.add_noise(
889
  init_latents_orig, noise, torch.tensor([t]))
890
- latents = (init_latents_proper * mask) + (latents * (1 - mask))
 
891
 
892
  # call the callback, if provided
893
  if i % callback_steps == 0:
894
  if callback is not None:
895
- callback(i, t, latents)
896
  if is_cancelled_callback is not None and is_cancelled_callback():
897
  return None
898
  #do latent upscale here
899
 
900
  # 9. Post-processing
901
- image = self.decode_latents(latents)
902
 
903
 
904
  # 10. Run safety checker
 
848
  print("after first step denoise latents")
849
  # print(latents)
850
  print(latents.shape)
851
+ upscale_latents = torch.nn.functional.interpolate(
852
  latents, size=(int(height*resize_scale)//8, int(width*resize_scale)//8))
853
 
854
  for i, t in enumerate(self.progress_bar(timesteps)):
855
  # expand the latents if we are doing classifier free guidance
856
  latent_model_input = torch.cat(
857
+ [upscale_latents] * 2) if do_classifier_free_guidance else upscale_latents
858
  print("latent_model_input 2nd step")
859
  # print(latent_model_input)
860
  print(latent_model_input.shape)
 
864
 
865
  latent_model_input = self.scheduler.scale_model_input(
866
  latent_model_input, t)
867
+
868
+
869
+
870
+
871
  print("latent_model_input after scheduler")
872
  # print(latent_model_input)
873
  print(latent_model_input.shape)
 
883
  noise_pred = noise_pred_uncond + guidance_scale * \
884
  (noise_pred_text - noise_pred_uncond)
885
 
886
+ print("compute the previous noisy sample")
887
  # compute the previous noisy sample x_t -> x_t-1
888
+ upscale_latents = self.scheduler.step(
889
+ noise_pred, t, upscale_latents, **extra_step_kwargs).prev_sample
890
 
891
+
892
+ print("compute mask")
893
  if mask is not None:
894
  # masking
895
  init_latents_proper = self.scheduler.add_noise(
896
  init_latents_orig, noise, torch.tensor([t]))
897
+ upscale_latents = (init_latents_proper *
898
+ mask) + (latents * (1 - mask))
899
 
900
  # call the callback, if provided
901
  if i % callback_steps == 0:
902
  if callback is not None:
903
+ callback(i, t, upscale_latents)
904
  if is_cancelled_callback is not None and is_cancelled_callback():
905
  return None
906
  #do latent upscale here
907
 
908
  # 9. Post-processing
909
+ image = self.decode_latents(upscale_latents)
910
 
911
 
912
  # 10. Run safety checker