File size: 2,083 Bytes
b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 b5fdf59 7ba8eb2 f165f1a 4fcb000 b5fdf59 7ba8eb2 b5fdf59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- fy
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Western Frisian (Netherlands)
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fy-NL
type: mozilla-foundation/common_voice_11_0
config: fy-NL
split: test
args: fy-NL
metrics:
- name: Wer
type: wer
value: 22.29686271707282
---
# Whisper Small Western Frisian (Netherlands)
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fy-NL dataset.
This is an attempt for cross lingual transfer from Dutch to Frisian, since Whisper doesn't support Frisian.
It achieves the following results on the evaluation set:
- Loss: 0.5443
- Wer: 22.2969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0067 | 10.01 | 1000 | 0.4810 | 23.0115 |
| 0.0008 | 21.0 | 2000 | 0.5200 | 22.3576 |
| 0.0004 | 31.01 | 3000 | 0.5443 | 22.2969 |
| 0.0003 | 42.0 | 4000 | 0.5610 | 22.3719 |
| 0.0002 | 52.01 | 5000 | 0.5674 | 22.3898 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|