--- language: - en tags: - text-classification - pytorch metrics: - accuracy - f1-score extra_gated_prompt: 'Please provide some basic information that confirms the scholarly use of our models. If you use our models for your work or research, please cite this paper: Sebők, M., Máté, Á., Ring, O., Kovács, V., & Lehoczki, R. (2024). Leveraging Open Large Language Models for Multilingual Policy Topic Classification: The Babel Machine Approach. Social Science Computer Review, 0(0). https://doi.org/10.1177/08944393241259434' extra_gated_fields: Name: text Country: country Institution: text E-mail: text --- # xlm-roberta-large-english-execspeech-cap-v3 ## Model description An `xlm-roberta-large` model fine-tuned on english training data containing executive speeches labeled with [major topic codes](https://www.comparativeagendas.net/pages/master-codebook) from the [Comparative Agendas Project](https://www.comparativeagendas.net/). ## How to use the model This snippet prints the three most probable labels and their corresponding softmax scores: ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("poltextlab/xlm-roberta-large-english-execspeech-cap-v3") tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large") sentence = "This is an example." inputs = tokenizer(sentence, return_tensors="pt", max_length=512, padding="do_not_pad", truncation=True ) logits = model(**inputs).logits probs = torch.softmax(logits, dim=1).tolist()[0] probs = {model.config.id2label[index]: round(probability, 2) for index, probability in enumerate(probs)} top3_probs = dict(sorted(probs.items(), key=lambda item: item[1], reverse=True)[:3]) print(top3_probs) ``` ## Model performance The model was evaluated on a test set of 16907 examples.
Model accuracy is **0.71**. | label | precision | recall | f1-score | support | |:-------------|------------:|---------:|-----------:|----------:| | 0 | 0.69 | 0.75 | 0.72 | 1731 | | 1 | 0.61 | 0.5 | 0.55 | 278 | | 2 | 0.83 | 0.79 | 0.81 | 685 | | 3 | 0.73 | 0.75 | 0.74 | 209 | | 4 | 0.65 | 0.5 | 0.56 | 347 | | 5 | 0.81 | 0.8 | 0.81 | 694 | | 6 | 0.71 | 0.62 | 0.66 | 176 | | 7 | 0.81 | 0.76 | 0.79 | 304 | | 8 | 0.77 | 0.6 | 0.67 | 120 | | 9 | 0.8 | 0.67 | 0.73 | 196 | | 10 | 0.75 | 0.68 | 0.71 | 577 | | 11 | 0.67 | 0.63 | 0.65 | 435 | | 12 | 0.66 | 0.57 | 0.61 | 203 | | 13 | 0.69 | 0.55 | 0.61 | 322 | | 14 | 0.71 | 0.64 | 0.67 | 997 | | 15 | 0.58 | 0.69 | 0.63 | 159 | | 16 | 0.66 | 0.62 | 0.64 | 327 | | 17 | 0.67 | 0.75 | 0.71 | 1626 | | 18 | 0.6 | 0.64 | 0.62 | 770 | | 19 | 0.55 | 0.58 | 0.56 | 251 | | 20 | 0.8 | 0.82 | 0.81 | 5324 | | 21 | 0.46 | 0.46 | 0.46 | 1176 | | macro avg | 0.69 | 0.65 | 0.67 | 16907 | | weighted avg | 0.71 | 0.71 | 0.71 | 16907 | ### Fine-tuning procedure This model was fine-tuned with the following key hyperparameters: - **Number of Training Epochs**: 10 - **Batch Size**: 8 - **Learning Rate**: 5e-06 - **Early Stopping**: enabled with a patience of 2 epochs ## Inference platform This model is used by the [CAP Babel Machine](https://babel.poltextlab.com), an open-source and free natural language processing tool, designed to simplify and speed up projects for comparative research. ## Cooperation Model performance can be significantly improved by extending our training sets. We appreciate every submission of CAP-coded corpora (of any domain and language) at poltextlab{at}poltextlab{dot}com or by using the [CAP Babel Machine](https://babel.poltextlab.com). ## Reference Sebők, M., Máté, Á., Ring, O., Kovács, V., & Lehoczki, R. (2024). Leveraging Open Large Language Models for Multilingual Policy Topic Classification: The Babel Machine Approach. Social Science Computer Review, 0(0). https://doi.org/10.1177/08944393241259434 ## Debugging and issues This architecture uses the `sentencepiece` tokenizer. In order to use the model before `transformers==4.27` you need to install it manually. If you encounter a `RuntimeError` when loading the model using the `from_pretrained()` method, adding `ignore_mismatched_sizes=True` should solve the issue.