pomp commited on
Commit
1ba7341
1 Parent(s): 6fbee91

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.65 +/- 0.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645153834a7d320a7e23539c6254dcbc736edaab736391b0f9c4efae16e2e82d
3
+ size 107773
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f408b7420d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f408b740b00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680444903442351004,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABmiaPj+LEr2xbBI/BmiaPj+LEr2xbBI/BmiaPj+LEr2xbBI/BmiaPj+LEr2xbBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvzCRv+Aghz/Kgpc/SfvQv0Bbir9W4MC/RFmFPZwtsj9AANQ/+Ao/PwdTTz+eqJ6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjsGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjsGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjsGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.3015749 -0.03577733 0.571971 ]\n [ 0.3015749 -0.03577733 0.571971 ]\n [ 0.3015749 -0.03577733 0.571971 ]\n [ 0.3015749 -0.03577733 0.571971 ]]",
60
+ "desired_goal": "[[-1.1343001 1.0556908 1.1836789 ]\n [-1.6326686 -1.0809097 -1.5068462 ]\n [ 0.06511167 1.3920169 1.6562576 ]\n [ 0.7462611 0.80986065 -1.2395208 ]]",
61
+ "observation": "[[ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]\n [ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]\n [ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]\n [ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8B3HPQCTtb02/o0+S+8QvalSw73pTIA+FtrtPVDjFT7JjcU9eacZPZGoi7zhSnw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09722507 -0.08865929 0.2773301 ]\n [-0.03538446 -0.09537251 0.25058678]\n [ 0.11613862 0.14637494 0.09646184]\n [ 0.03751323 -0.01704815 0.24637939]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfZI7bCIzDsCUhpRSlIwBbJRLMowBdJRHQKaAPX8O09h1fZQoaAZoCWgPQwhW8UbmkV8AwJSGlFKUaBVLMmgWR0Cmf/rJCBwudX2UKGgGaAloD0MIjsu4qYFmC8CUhpRSlGgVSzJoFkdApn+4XAM2FXV9lChoBmgJaA9DCBtkkpGzEAPAlIaUUpRoFUsyaBZHQKZ/dLs8gZF1fZQoaAZoCWgPQwgA5IQJozkOwJSGlFKUaBVLMmgWR0CmgUiV8kUsdX2UKGgGaAloD0MIUl+WdmruCsCUhpRSlGgVSzJoFkdApoEGD8LronV9lChoBmgJaA9DCPzHQnQIXPm/lIaUUpRoFUsyaBZHQKaAw8xKxs51fZQoaAZoCWgPQwj8GHPXEvL+v5SGlFKUaBVLMmgWR0CmgIAggX/HdX2UKGgGaAloD0MIyVnY0w7fAsCUhpRSlGgVSzJoFkdApoJMKqn3tnV9lChoBmgJaA9DCEc7bvjd9AXAlIaUUpRoFUsyaBZHQKaCCWBSUC91fZQoaAZoCWgPQwgrhqsDIO4FwJSGlFKUaBVLMmgWR0Cmgcb+DOC5dX2UKGgGaAloD0MIY3/ZPXn4A8CUhpRSlGgVSzJoFkdApoGDRBu4w3V9lChoBmgJaA9DCH45s12hz/S/lIaUUpRoFUsyaBZHQKaDTikO7QN1fZQoaAZoCWgPQwirsYS1MZYMwJSGlFKUaBVLMmgWR0CmgwtmlImPdX2UKGgGaAloD0MIxOxl22lrAMCUhpRSlGgVSzJoFkdApoLJDRc/uHV9lChoBmgJaA9DCM2RlV8GAwPAlIaUUpRoFUsyaBZHQKaChX8wYch1fZQoaAZoCWgPQwjOiNLe4PsRwJSGlFKUaBVLMmgWR0CmhFbJwKjSdX2UKGgGaAloD0MIowVoW836CMCUhpRSlGgVSzJoFkdApoQUCV8kU3V9lChoBmgJaA9DCEF9y5wuCwTAlIaUUpRoFUsyaBZHQKaD0aQV9F51fZQoaAZoCWgPQwijW6/pQQECwJSGlFKUaBVLMmgWR0Cmg45JK8L8dX2UKGgGaAloD0MInmLVIMyNCMCUhpRSlGgVSzJoFkdApoVuAAhjfHV9lChoBmgJaA9DCKUsQxzr4gfAlIaUUpRoFUsyaBZHQKaFK/bj94x1fZQoaAZoCWgPQwhrSNxj6YMIwJSGlFKUaBVLMmgWR0CmhOmGM4tIdX2UKGgGaAloD0MIAIxn0NAfBcCUhpRSlGgVSzJoFkdApoSlzEJjUnV9lChoBmgJaA9DCIhkyLH1TAHAlIaUUpRoFUsyaBZHQKaGghTwUg11fZQoaAZoCWgPQwgFhxdEpOYJwJSGlFKUaBVLMmgWR0Cmhj++23KCdX2UKGgGaAloD0MIuJIdG4FYBcCUhpRSlGgVSzJoFkdApoX9YQrc03V9lChoBmgJaA9DCNKMRdPZ6QDAlIaUUpRoFUsyaBZHQKaFuay8jA11fZQoaAZoCWgPQwhqoWRyakcEwJSGlFKUaBVLMmgWR0Cmh5aHKwIMdX2UKGgGaAloD0MI3Lkw0osaC8CUhpRSlGgVSzJoFkdApodTyjHn2nV9lChoBmgJaA9DCLQ8D+7O2vu/lIaUUpRoFUsyaBZHQKaHEc+aBqd1fZQoaAZoCWgPQwiNXaJ6a6ARwJSGlFKUaBVLMmgWR0Cmhs46GQCCdX2UKGgGaAloD0MIb38uGjIe/r+UhpRSlGgVSzJoFkdApoiemzjWCnV9lChoBmgJaA9DCLoyqDY4Efm/lIaUUpRoFUsyaBZHQKaIW9mHxjJ1fZQoaAZoCWgPQwhj78UX7bELwJSGlFKUaBVLMmgWR0CmiBl+/gzhdX2UKGgGaAloD0MI2bJ8XYafBsCUhpRSlGgVSzJoFkdApofWHN5dGHV9lChoBmgJaA9DCM2TawpkZhLAlIaUUpRoFUsyaBZHQKaJqxIre691fZQoaAZoCWgPQwhr9GqA0hADwJSGlFKUaBVLMmgWR0CmiWh6jWTYdX2UKGgGaAloD0MI3rBtUWYD97+UhpRSlGgVSzJoFkdApokl/J/5L3V9lChoBmgJaA9DCJ7wEpz6APi/lIaUUpRoFUsyaBZHQKaI4lP8AJd1fZQoaAZoCWgPQwjkS6jg8MIMwJSGlFKUaBVLMmgWR0CmirwXIlt1dX2UKGgGaAloD0MII59XPPXoCMCUhpRSlGgVSzJoFkdApop5YDDCQHV9lChoBmgJaA9DCJlH/mDguf2/lIaUUpRoFUsyaBZHQKaKNupjtol1fZQoaAZoCWgPQwjWUkDa/0APwJSGlFKUaBVLMmgWR0CmifNITXardX2UKGgGaAloD0MIya8fYoPlBsCUhpRSlGgVSzJoFkdApovPTqjaf3V9lChoBmgJaA9DCPtd2Jqt/AvAlIaUUpRoFUsyaBZHQKaLjJHRTjx1fZQoaAZoCWgPQwjUQzS6gxgAwJSGlFKUaBVLMmgWR0Cmi0oRRMvidX2UKGgGaAloD0MIsrj/yHTICMCUhpRSlGgVSzJoFkdAposGlhw2l3V9lChoBmgJaA9DCCY5YFeTNxLAlIaUUpRoFUsyaBZHQKaM4Elme191fZQoaAZoCWgPQwhLqyFxjyUIwJSGlFKUaBVLMmgWR0CmjJ2joIOZdX2UKGgGaAloD0MIICbhQh5B+r+UhpRSlGgVSzJoFkdApoxbWCmMwXV9lChoBmgJaA9DCJbMsbyrXgjAlIaUUpRoFUsyaBZHQKaMF71Iy0t1fZQoaAZoCWgPQwiVumQcIxn3v5SGlFKUaBVLMmgWR0CmjfMRg7YDdX2UKGgGaAloD0MI4NqJkpAoD8CUhpRSlGgVSzJoFkdApo2wXGff43V9lChoBmgJaA9DCBkg0QSKmP6/lIaUUpRoFUsyaBZHQKaNbf0mMOx1fZQoaAZoCWgPQwg5C3va4c8JwJSGlFKUaBVLMmgWR0CmjSpK8L8adX2UKGgGaAloD0MIfSO6Z11DD8CUhpRSlGgVSzJoFkdApo8Bv1lGw3V9lChoBmgJaA9DCC7jpgaaLwXAlIaUUpRoFUsyaBZHQKaOvvw3HaN1fZQoaAZoCWgPQwhupGyRtPsAwJSGlFKUaBVLMmgWR0CmjnyoOx0NdX2UKGgGaAloD0MIAtU/iGSIAsCUhpRSlGgVSzJoFkdApo448Md92HV9lChoBmgJaA9DCCV2bW+3hAvAlIaUUpRoFUsyaBZHQKaQCwUxmCl1fZQoaAZoCWgPQwg4ns+AehMBwJSGlFKUaBVLMmgWR0Cmj8hBiTdMdX2UKGgGaAloD0MIY9S19j7VCsCUhpRSlGgVSzJoFkdApo+GCEpRXXV9lChoBmgJaA9DCL5muWx0Dv+/lIaUUpRoFUsyaBZHQKaPQmUnogV1fZQoaAZoCWgPQwgaFqOutVcFwJSGlFKUaBVLMmgWR0CmkRm34Kx+dX2UKGgGaAloD0MIL/t1pztPBMCUhpRSlGgVSzJoFkdAppDXQv6CUXV9lChoBmgJaA9DCGJLj6Z6cgzAlIaUUpRoFUsyaBZHQKaQlP9kz411fZQoaAZoCWgPQwhLPKBsyrULwJSGlFKUaBVLMmgWR0CmkFFK02LpdX2UKGgGaAloD0MIEJNwIY/g+7+UhpRSlGgVSzJoFkdAppIlygf2b3V9lChoBmgJaA9DCKpHGtzWtgrAlIaUUpRoFUsyaBZHQKaR42MKkVN1fZQoaAZoCWgPQwjvycNCran8v5SGlFKUaBVLMmgWR0CmkaE0zj3mdX2UKGgGaAloD0MIJ2co7nijEMCUhpRSlGgVSzJoFkdAppFddzGPxXV9lChoBmgJaA9DCJGdt7HZEfe/lIaUUpRoFUsyaBZHQKaTNYZl4C91fZQoaAZoCWgPQwg7inPU0bH1v5SGlFKUaBVLMmgWR0CmkvK2jO9ndX2UKGgGaAloD0MI6PS8GwvKCsCUhpRSlGgVSzJoFkdAppKwOMERrnV9lChoBmgJaA9DCE/N5QZDvQ3AlIaUUpRoFUsyaBZHQKaSbH80k4Z1fZQoaAZoCWgPQwieRIR/EXQOwJSGlFKUaBVLMmgWR0CmlD6RQrMDdX2UKGgGaAloD0MIrJFdaRmpAsCUhpRSlGgVSzJoFkdAppP7/hl183V9lChoBmgJaA9DCLaA0Hr4Eg3AlIaUUpRoFUsyaBZHQKaTuafBeol1fZQoaAZoCWgPQwiVRPZBlgX7v5SGlFKUaBVLMmgWR0Cmk3X/HYHxdX2UKGgGaAloD0MIDKzj+KGSDMCUhpRSlGgVSzJoFkdAppVOLiuMdnV9lChoBmgJaA9DCKVmD7QCwwnAlIaUUpRoFUsyaBZHQKaVC8nuy/t1fZQoaAZoCWgPQwh3gZICC6D8v5SGlFKUaBVLMmgWR0CmlMlS88LbdX2UKGgGaAloD0MIIsK/CBozCsCUhpRSlGgVSzJoFkdAppSF9roGIXV9lChoBmgJaA9DCK8nui78QATAlIaUUpRoFUsyaBZHQKaWapAD7qJ1fZQoaAZoCWgPQwiMg0vHnOf4v5SGlFKUaBVLMmgWR0CmlifNRm9QdX2UKGgGaAloD0MIo+cWuhJBAsCUhpRSlGgVSzJoFkdAppXlWCEpRXV9lChoBmgJaA9DCNXrFoGx3gHAlIaUUpRoFUsyaBZHQKaVobZOBUd1fZQoaAZoCWgPQwhKDAIrhxYIwJSGlFKUaBVLMmgWR0Cml3YnF5v+dX2UKGgGaAloD0MIuTMTDOdaAsCUhpRSlGgVSzJoFkdAppczfxc3VHV9lChoBmgJaA9DCOfG9IQl/grAlIaUUpRoFUsyaBZHQKaW8QWepXJ1fZQoaAZoCWgPQwja5zHKM48GwJSGlFKUaBVLMmgWR0Cmlq2yC4BndX2UKGgGaAloD0MIAFXcuMV8CMCUhpRSlGgVSzJoFkdAppiG38XN1XV9lChoBmgJaA9DCAbYR6euTBHAlIaUUpRoFUsyaBZHQKaYRDjzZpV1fZQoaAZoCWgPQwg5ud+hKEAQwJSGlFKUaBVLMmgWR0CmmAH2ys0YdX2UKGgGaAloD0MIsB9ig4UT+r+UhpRSlGgVSzJoFkdAppe+UOd5IHV9lChoBmgJaA9DCF68H7dfPv2/lIaUUpRoFUsyaBZHQKaZkYO2AoZ1fZQoaAZoCWgPQwhRhqqYSn8NwJSGlFKUaBVLMmgWR0CmmU7e/Ho6dX2UKGgGaAloD0MIZD+LpUi+/L+UhpRSlGgVSzJoFkdAppkMh3aBZ3V9lChoBmgJaA9DCLA8SE+RQ/e/lIaUUpRoFUsyaBZHQKaYyMo+fRN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2756e9574f51d5d64e5459a9098b4c188886b0fc3f99b0990a2307aa8ea1adcb
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebd678d284b2a4cdf3f9c51d07de1dc35b8f045c4630f5c6b751eb7d121e4c3d
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f408b7420d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f408b740b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680444903442351004, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABmiaPj+LEr2xbBI/BmiaPj+LEr2xbBI/BmiaPj+LEr2xbBI/BmiaPj+LEr2xbBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvzCRv+Aghz/Kgpc/SfvQv0Bbir9W4MC/RFmFPZwtsj9AANQ/+Ao/PwdTTz+eqJ6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjsGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjsGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjsGaJo+P4sSvbFsEj8lc7m6QSKTu6CLFjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3015749 -0.03577733 0.571971 ]\n [ 0.3015749 -0.03577733 0.571971 ]\n [ 0.3015749 -0.03577733 0.571971 ]\n [ 0.3015749 -0.03577733 0.571971 ]]", "desired_goal": "[[-1.1343001 1.0556908 1.1836789 ]\n [-1.6326686 -1.0809097 -1.5068462 ]\n [ 0.06511167 1.3920169 1.6562576 ]\n [ 0.7462611 0.80986065 -1.2395208 ]]", "observation": "[[ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]\n [ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]\n [ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]\n [ 0.3015749 -0.03577733 0.571971 -0.00141487 -0.00449017 0.00229714]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8B3HPQCTtb02/o0+S+8QvalSw73pTIA+FtrtPVDjFT7JjcU9eacZPZGoi7zhSnw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09722507 -0.08865929 0.2773301 ]\n [-0.03538446 -0.09537251 0.25058678]\n [ 0.11613862 0.14637494 0.09646184]\n [ 0.03751323 -0.01704815 0.24637939]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfZI7bCIzDsCUhpRSlIwBbJRLMowBdJRHQKaAPX8O09h1fZQoaAZoCWgPQwhW8UbmkV8AwJSGlFKUaBVLMmgWR0Cmf/rJCBwudX2UKGgGaAloD0MIjsu4qYFmC8CUhpRSlGgVSzJoFkdApn+4XAM2FXV9lChoBmgJaA9DCBtkkpGzEAPAlIaUUpRoFUsyaBZHQKZ/dLs8gZF1fZQoaAZoCWgPQwgA5IQJozkOwJSGlFKUaBVLMmgWR0CmgUiV8kUsdX2UKGgGaAloD0MIUl+WdmruCsCUhpRSlGgVSzJoFkdApoEGD8LronV9lChoBmgJaA9DCPzHQnQIXPm/lIaUUpRoFUsyaBZHQKaAw8xKxs51fZQoaAZoCWgPQwj8GHPXEvL+v5SGlFKUaBVLMmgWR0CmgIAggX/HdX2UKGgGaAloD0MIyVnY0w7fAsCUhpRSlGgVSzJoFkdApoJMKqn3tnV9lChoBmgJaA9DCEc7bvjd9AXAlIaUUpRoFUsyaBZHQKaCCWBSUC91fZQoaAZoCWgPQwgrhqsDIO4FwJSGlFKUaBVLMmgWR0Cmgcb+DOC5dX2UKGgGaAloD0MIY3/ZPXn4A8CUhpRSlGgVSzJoFkdApoGDRBu4w3V9lChoBmgJaA9DCH45s12hz/S/lIaUUpRoFUsyaBZHQKaDTikO7QN1fZQoaAZoCWgPQwirsYS1MZYMwJSGlFKUaBVLMmgWR0CmgwtmlImPdX2UKGgGaAloD0MIxOxl22lrAMCUhpRSlGgVSzJoFkdApoLJDRc/uHV9lChoBmgJaA9DCM2RlV8GAwPAlIaUUpRoFUsyaBZHQKaChX8wYch1fZQoaAZoCWgPQwjOiNLe4PsRwJSGlFKUaBVLMmgWR0CmhFbJwKjSdX2UKGgGaAloD0MIowVoW836CMCUhpRSlGgVSzJoFkdApoQUCV8kU3V9lChoBmgJaA9DCEF9y5wuCwTAlIaUUpRoFUsyaBZHQKaD0aQV9F51fZQoaAZoCWgPQwijW6/pQQECwJSGlFKUaBVLMmgWR0Cmg45JK8L8dX2UKGgGaAloD0MInmLVIMyNCMCUhpRSlGgVSzJoFkdApoVuAAhjfHV9lChoBmgJaA9DCKUsQxzr4gfAlIaUUpRoFUsyaBZHQKaFK/bj94x1fZQoaAZoCWgPQwhrSNxj6YMIwJSGlFKUaBVLMmgWR0CmhOmGM4tIdX2UKGgGaAloD0MIAIxn0NAfBcCUhpRSlGgVSzJoFkdApoSlzEJjUnV9lChoBmgJaA9DCIhkyLH1TAHAlIaUUpRoFUsyaBZHQKaGghTwUg11fZQoaAZoCWgPQwgFhxdEpOYJwJSGlFKUaBVLMmgWR0Cmhj++23KCdX2UKGgGaAloD0MIuJIdG4FYBcCUhpRSlGgVSzJoFkdApoX9YQrc03V9lChoBmgJaA9DCNKMRdPZ6QDAlIaUUpRoFUsyaBZHQKaFuay8jA11fZQoaAZoCWgPQwhqoWRyakcEwJSGlFKUaBVLMmgWR0Cmh5aHKwIMdX2UKGgGaAloD0MI3Lkw0osaC8CUhpRSlGgVSzJoFkdApodTyjHn2nV9lChoBmgJaA9DCLQ8D+7O2vu/lIaUUpRoFUsyaBZHQKaHEc+aBqd1fZQoaAZoCWgPQwiNXaJ6a6ARwJSGlFKUaBVLMmgWR0Cmhs46GQCCdX2UKGgGaAloD0MIb38uGjIe/r+UhpRSlGgVSzJoFkdApoiemzjWCnV9lChoBmgJaA9DCLoyqDY4Efm/lIaUUpRoFUsyaBZHQKaIW9mHxjJ1fZQoaAZoCWgPQwhj78UX7bELwJSGlFKUaBVLMmgWR0CmiBl+/gzhdX2UKGgGaAloD0MI2bJ8XYafBsCUhpRSlGgVSzJoFkdApofWHN5dGHV9lChoBmgJaA9DCM2TawpkZhLAlIaUUpRoFUsyaBZHQKaJqxIre691fZQoaAZoCWgPQwhr9GqA0hADwJSGlFKUaBVLMmgWR0CmiWh6jWTYdX2UKGgGaAloD0MI3rBtUWYD97+UhpRSlGgVSzJoFkdApokl/J/5L3V9lChoBmgJaA9DCJ7wEpz6APi/lIaUUpRoFUsyaBZHQKaI4lP8AJd1fZQoaAZoCWgPQwjkS6jg8MIMwJSGlFKUaBVLMmgWR0CmirwXIlt1dX2UKGgGaAloD0MII59XPPXoCMCUhpRSlGgVSzJoFkdApop5YDDCQHV9lChoBmgJaA9DCJlH/mDguf2/lIaUUpRoFUsyaBZHQKaKNupjtol1fZQoaAZoCWgPQwjWUkDa/0APwJSGlFKUaBVLMmgWR0CmifNITXardX2UKGgGaAloD0MIya8fYoPlBsCUhpRSlGgVSzJoFkdApovPTqjaf3V9lChoBmgJaA9DCPtd2Jqt/AvAlIaUUpRoFUsyaBZHQKaLjJHRTjx1fZQoaAZoCWgPQwjUQzS6gxgAwJSGlFKUaBVLMmgWR0Cmi0oRRMvidX2UKGgGaAloD0MIsrj/yHTICMCUhpRSlGgVSzJoFkdAposGlhw2l3V9lChoBmgJaA9DCCY5YFeTNxLAlIaUUpRoFUsyaBZHQKaM4Elme191fZQoaAZoCWgPQwhLqyFxjyUIwJSGlFKUaBVLMmgWR0CmjJ2joIOZdX2UKGgGaAloD0MIICbhQh5B+r+UhpRSlGgVSzJoFkdApoxbWCmMwXV9lChoBmgJaA9DCJbMsbyrXgjAlIaUUpRoFUsyaBZHQKaMF71Iy0t1fZQoaAZoCWgPQwiVumQcIxn3v5SGlFKUaBVLMmgWR0CmjfMRg7YDdX2UKGgGaAloD0MI4NqJkpAoD8CUhpRSlGgVSzJoFkdApo2wXGff43V9lChoBmgJaA9DCBkg0QSKmP6/lIaUUpRoFUsyaBZHQKaNbf0mMOx1fZQoaAZoCWgPQwg5C3va4c8JwJSGlFKUaBVLMmgWR0CmjSpK8L8adX2UKGgGaAloD0MIfSO6Z11DD8CUhpRSlGgVSzJoFkdApo8Bv1lGw3V9lChoBmgJaA9DCC7jpgaaLwXAlIaUUpRoFUsyaBZHQKaOvvw3HaN1fZQoaAZoCWgPQwhupGyRtPsAwJSGlFKUaBVLMmgWR0CmjnyoOx0NdX2UKGgGaAloD0MIAtU/iGSIAsCUhpRSlGgVSzJoFkdApo448Md92HV9lChoBmgJaA9DCCV2bW+3hAvAlIaUUpRoFUsyaBZHQKaQCwUxmCl1fZQoaAZoCWgPQwg4ns+AehMBwJSGlFKUaBVLMmgWR0Cmj8hBiTdMdX2UKGgGaAloD0MIY9S19j7VCsCUhpRSlGgVSzJoFkdApo+GCEpRXXV9lChoBmgJaA9DCL5muWx0Dv+/lIaUUpRoFUsyaBZHQKaPQmUnogV1fZQoaAZoCWgPQwgaFqOutVcFwJSGlFKUaBVLMmgWR0CmkRm34Kx+dX2UKGgGaAloD0MIL/t1pztPBMCUhpRSlGgVSzJoFkdAppDXQv6CUXV9lChoBmgJaA9DCGJLj6Z6cgzAlIaUUpRoFUsyaBZHQKaQlP9kz411fZQoaAZoCWgPQwhLPKBsyrULwJSGlFKUaBVLMmgWR0CmkFFK02LpdX2UKGgGaAloD0MIEJNwIY/g+7+UhpRSlGgVSzJoFkdAppIlygf2b3V9lChoBmgJaA9DCKpHGtzWtgrAlIaUUpRoFUsyaBZHQKaR42MKkVN1fZQoaAZoCWgPQwjvycNCran8v5SGlFKUaBVLMmgWR0CmkaE0zj3mdX2UKGgGaAloD0MIJ2co7nijEMCUhpRSlGgVSzJoFkdAppFddzGPxXV9lChoBmgJaA9DCJGdt7HZEfe/lIaUUpRoFUsyaBZHQKaTNYZl4C91fZQoaAZoCWgPQwg7inPU0bH1v5SGlFKUaBVLMmgWR0CmkvK2jO9ndX2UKGgGaAloD0MI6PS8GwvKCsCUhpRSlGgVSzJoFkdAppKwOMERrnV9lChoBmgJaA9DCE/N5QZDvQ3AlIaUUpRoFUsyaBZHQKaSbH80k4Z1fZQoaAZoCWgPQwieRIR/EXQOwJSGlFKUaBVLMmgWR0CmlD6RQrMDdX2UKGgGaAloD0MIrJFdaRmpAsCUhpRSlGgVSzJoFkdAppP7/hl183V9lChoBmgJaA9DCLaA0Hr4Eg3AlIaUUpRoFUsyaBZHQKaTuafBeol1fZQoaAZoCWgPQwiVRPZBlgX7v5SGlFKUaBVLMmgWR0Cmk3X/HYHxdX2UKGgGaAloD0MIDKzj+KGSDMCUhpRSlGgVSzJoFkdAppVOLiuMdnV9lChoBmgJaA9DCKVmD7QCwwnAlIaUUpRoFUsyaBZHQKaVC8nuy/t1fZQoaAZoCWgPQwh3gZICC6D8v5SGlFKUaBVLMmgWR0CmlMlS88LbdX2UKGgGaAloD0MIIsK/CBozCsCUhpRSlGgVSzJoFkdAppSF9roGIXV9lChoBmgJaA9DCK8nui78QATAlIaUUpRoFUsyaBZHQKaWapAD7qJ1fZQoaAZoCWgPQwiMg0vHnOf4v5SGlFKUaBVLMmgWR0CmlifNRm9QdX2UKGgGaAloD0MIo+cWuhJBAsCUhpRSlGgVSzJoFkdAppXlWCEpRXV9lChoBmgJaA9DCNXrFoGx3gHAlIaUUpRoFUsyaBZHQKaVobZOBUd1fZQoaAZoCWgPQwhKDAIrhxYIwJSGlFKUaBVLMmgWR0Cml3YnF5v+dX2UKGgGaAloD0MIuTMTDOdaAsCUhpRSlGgVSzJoFkdAppczfxc3VHV9lChoBmgJaA9DCOfG9IQl/grAlIaUUpRoFUsyaBZHQKaW8QWepXJ1fZQoaAZoCWgPQwja5zHKM48GwJSGlFKUaBVLMmgWR0Cmlq2yC4BndX2UKGgGaAloD0MIAFXcuMV8CMCUhpRSlGgVSzJoFkdAppiG38XN1XV9lChoBmgJaA9DCAbYR6euTBHAlIaUUpRoFUsyaBZHQKaYRDjzZpV1fZQoaAZoCWgPQwg5ud+hKEAQwJSGlFKUaBVLMmgWR0CmmAH2ys0YdX2UKGgGaAloD0MIsB9ig4UT+r+UhpRSlGgVSzJoFkdAppe+UOd5IHV9lChoBmgJaA9DCF68H7dfPv2/lIaUUpRoFUsyaBZHQKaZkYO2AoZ1fZQoaAZoCWgPQwhRhqqYSn8NwJSGlFKUaBVLMmgWR0CmmU7e/Ho6dX2UKGgGaAloD0MIZD+LpUi+/L+UhpRSlGgVSzJoFkdAppkMh3aBZ3V9lChoBmgJaA9DCLA8SE+RQ/e/lIaUUpRoFUsyaBZHQKaYyMo+fRN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (739 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.6504135192371905, "std_reward": 0.7865861929524871, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T16:13:19.394125"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa6692d81786e73ab34fdac8e10c26a037249c2b29ef79f675d35da7d0c00428
3
+ size 3056