File size: 5,057 Bytes
7a56f4d
 
 
 
12e61e0
f7449c7
 
 
 
 
 
fe96d63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7449c7
 
4b65d21
d8e8e53
3c6049e
fe96d63
23e2847
fe96d63
d8e8e53
fe96d63
7a56f4d
 
 
f7449c7
7a56f4d
f7449c7
 
 
 
 
8ff0b1c
f7449c7
 
 
 
 
 
 
 
 
 
1d62389
f7449c7
 
1d62389
 
f7449c7
1d62389
f7449c7
 
8b86372
 
f7449c7
 
7a56f4d
 
 
f7449c7
 
 
 
 
7a56f4d
 
 
3bf1e72
0932d5b
 
7a56f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15da1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
license: apache-2.0
tags:
- generated_from_trainer
- distilgpt2
- email generation
- email
datasets:
- aeslc
- postbot/multi_emails
widget:
- text: 'Good Morning Professor Beans,

    Hope you are doing well. I just wanted to reach out and ask if differential calculus
    will be on the exam'
  example_title: email to prof
- text: 'Hey <NAME>,


    Thank you for signing up for my weekly newsletter. Before we get started, you''ll
    have to confirm your email address.'
  example_title: newsletter
- text: 'Hi <NAME>,


    I hope this email finds you well. I wanted to reach out and ask about office hours'
  example_title: office hours
- text: 'Greetings <NAME>,


    I hope you had a splendid evening at the Company sausage eating festival. I am
    reaching out because'
  example_title: festival
- text: 'Good Morning Harold,


    I was wondering when the next'
  example_title: event
- text: URGENT - I need the TPS reports
  example_title: URGENT
- text: 'Hi Archibald,


    I hope this email finds you extremely well.'
  example_title: emails that find you
- text: 'Hello there.


    I just wanted to reach out and check in to'
  example_title: checking in
- text: 'Hello <NAME>,


    I hope this email finds you well. I wanted to reach out and see if you''ve enjoyed
    your time with us'
  example_title: work well
- text: 'Hi <NAME>,


    I hope this email finds you well. I wanted to reach out and see if we could catch
    up'
  example_title: catch up
- text: I'm <NAME> and I just moved into the area and wanted to reach out and get
    some details on where I could get groceries and
  example_title: grocery
parameters:
  min_length: 4
  max_length: 128
  length_penalty: 0.8
  no_repeat_ngram_size: 2
  do_sample: false
  num_beams: 8
  early_stopping: true
  repetition_penalty: 5.5
base_model: distilgpt2
---


# distilgpt2-emailgen

Why write the rest of your email when you can generate it?

```python
from transformers import pipeline

model_tag = "postbot/distilgpt2-emailgen"
generator = pipeline(
              'text-generation', 
              model=model_tag, 
            )
            
prompt = """
Hello, 

Following up on the bubblegum shipment."""

result = generator(
    prompt,
    max_length=64,
    do_sample=False,
    early_stopping=True,
) # generate
print(result[0]['generated_text'])
```

- try it in a [Google Colab](https://colab.research.google.com/gist/pszemraj/91df57e0c2caf1d5273b78576ad2853e/postbot-distilgpt2-emailgen-demo.ipynb) notebook
- Use it in bash/cmd [with this gist](https://gist.github.com/pszemraj/c1b0a76445418b6bbddd5f9633d1bb7f) :) 

> For this model, formatting matters. The results may be (significantly) different between the structure outlined above and `prompt = "Hey, just wanted to ..."` etc.

## Model description

This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a dataset of 50k emails, including the classic `aeslc` dataset.

It achieves the following results on the evaluation set:
- Loss: 2.6247


## Intended uses & limitations

The intended use of this model is to provide suggestions to "autocomplete" the rest of your email. Said another way, it should serve as a **tool to write predictable emails faster**. It is not intended to write entire emails; at least **some input** is required to guide the direction of the model.

Please verify any suggestions by the model for A) False claims and B) negation statements before accepting/sending something.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8299        | 1.0   | 248  | 2.7971          |
| 2.6984        | 2.0   | 496  | 2.6826          |
| 2.7022        | 3.0   | 744  | 2.6361          |
| 2.6436        | 4.0   | 992  | 2.6245          |
| 2.6195        | 5.0   | 1240 | 2.6247          |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_postbot__distilgpt2-emailgen)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 24.89   |
| ARC (25-shot)         | 21.76          |
| HellaSwag (10-shot)   | 27.52    |
| MMLU (5-shot)         | 25.97         |
| TruthfulQA (0-shot)   | 46.17   |
| Winogrande (5-shot)   | 51.62   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 1.16         |