Post
387
🚀 Let’s transform LLMs into encoders 🚀
Auto-regressive LMs have ruled, but encoder-based architectures like GLiNER are proving to be just as powerful for information extraction while offering better efficiency and interpretability. 🔍✨
Past encoder backbones were limited by small pre-training datasets and old techniques, but with innovations like LLM2Vec, we've transformed decoders into high-performing encoders! 🔄💡
What’s New?
🔹Converted Llama & Qwen decoders to advanced encoders
🔹Improved GLiNER architecture to be able to work with rotary positional encoding
🔹New GLiNER (zero-shot NER) & GLiClass (zero-shot classification) models
🔥 Check it out:
New models: knowledgator/llm2encoder-66d1c76e3c8270397efc5b5e
GLiNER package: https://github.com/urchade/GLiNER
GLiClass package: https://github.com/Knowledgator/GLiClass
💻 Read our blog for more insights, and stay tuned for what’s next!
https://medium.com/@knowledgrator/llm2encoders-e7d90b9f5966
Auto-regressive LMs have ruled, but encoder-based architectures like GLiNER are proving to be just as powerful for information extraction while offering better efficiency and interpretability. 🔍✨
Past encoder backbones were limited by small pre-training datasets and old techniques, but with innovations like LLM2Vec, we've transformed decoders into high-performing encoders! 🔄💡
What’s New?
🔹Converted Llama & Qwen decoders to advanced encoders
🔹Improved GLiNER architecture to be able to work with rotary positional encoding
🔹New GLiNER (zero-shot NER) & GLiClass (zero-shot classification) models
🔥 Check it out:
New models: knowledgator/llm2encoder-66d1c76e3c8270397efc5b5e
GLiNER package: https://github.com/urchade/GLiNER
GLiClass package: https://github.com/Knowledgator/GLiClass
💻 Read our blog for more insights, and stay tuned for what’s next!
https://medium.com/@knowledgrator/llm2encoders-e7d90b9f5966