Post
1128
Introducing Lemone-router, a series of classification models designed to produce an optimal multi-agent system for different branches of tax law.
Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts :
It achieves the following results on the evaluation set:
- Loss: 0.4734
- Accuracy: 0.9191
Link to the collection: louisbrulenaudet/lemone-router-671cce21d6410f3570514762
Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts :
label2id = {
"Bénéfices professionnels": 0,
"Contrôle et contentieux": 1,
"Dispositifs transversaux": 2,
"Fiscalité des entreprises": 3,
"Patrimoine et enregistrement": 4,
"Revenus particuliers": 5,
"Revenus patrimoniaux": 6,
"Taxes sur la consommation": 7
}
id2label = {
0: "Bénéfices professionnels",
1: "Contrôle et contentieux",
2: "Dispositifs transversaux",
3: "Fiscalité des entreprises",
4: "Patrimoine et enregistrement",
5: "Revenus particuliers",
6: "Revenus patrimoniaux",
7: "Taxes sur la consommation"
}
It achieves the following results on the evaluation set:
- Loss: 0.4734
- Accuracy: 0.9191
Link to the collection: louisbrulenaudet/lemone-router-671cce21d6410f3570514762