--- library_name: transformers language: - th license: apache-2.0 base_model: biodatlab/whisper-th-small-combined tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small Th Combined Finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: th split: test args: 'config: th, split: validated' metrics: - name: Wer type: wer value: 0.41320489664860527 --- # Whisper Small Th Combined Finetuned This model is a fine-tuned version of [biodatlab/whisper-th-small-combined](https://huggingface.co/biodatlab/whisper-th-small-combined) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0702 - Wer: 0.4132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.3362 | 0.2175 | 1000 | 0.1439 | 0.6061 | | 0.2993 | 0.4349 | 2000 | 0.1230 | 0.5645 | | 0.2523 | 0.6524 | 3000 | 0.1080 | 0.5299 | | 0.2823 | 0.8698 | 4000 | 0.0939 | 0.4914 | | 0.2459 | 1.0873 | 5000 | 0.0840 | 0.4570 | | 0.2005 | 1.3047 | 6000 | 0.0776 | 0.4364 | | 0.2081 | 1.5222 | 7000 | 0.0724 | 0.4157 | | 0.1918 | 1.7396 | 8000 | 0.0702 | 0.4132 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0