File size: 17,329 Bytes
605c606 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### pickle file checking for AUPRC random lead"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'list'> 50\n",
"<class 'dict'>\n",
"----------------------\n",
"epoch: \n",
"model: \n",
"train_auprc: \n",
"valid_auprc: \n",
"valid_targets: \n",
"valid_outputs: \n",
"-----------------------\n",
"-----------------------\n",
"[0.20795198881124255, 0.2924131615408049, 0.31194815399388126, 0.357671229080611, 0.3907590012977773, 0.39197022751675975, 0.39688932315376796, 0.41098642756821824, 0.4280303875603716, 0.4251116328825386, 0.41492397254078656, 0.44119503399957305, 0.42866565608661766, 0.42155615910506705, 0.4352771610735857, 0.4355309812927433, 0.4575302940022513, 0.4621060999031488, 0.4615244295921646, 0.4347042141353311, 0.4843673460502776, 0.49216570578173724, 0.49284316077316226, 0.4976730562122618, 0.4981241668777771, 0.4985906269863735, 0.5023674118168958, 0.5039947051779108, 0.5025596400291938, 0.501332454384853, 0.5017141509761979, 0.5033696471830942, 0.5035807094153067, 0.5044712423289812, 0.49912591150498187, 0.5036493639939076, 0.5073756144905568, 0.5066738446153692, 0.5041024684427422, 0.5061074251973712, 0.5079663458037375, 0.5080434717076571, 0.5071731389137064, 0.5066158069067092, 0.5059333249321385, 0.5078252460128987, 0.5081895157894929, 0.5079278975582764, 0.5073543066159428, 0.5078677916025073]\n",
"0.5081895157894929 46\n"
]
}
],
"source": [
"import pickle\n",
"import torch\n",
"\n",
"address = \"./model_output/model_group5/PROGRESS.pickle\"\n",
"\n",
"with open(address, 'rb') as file:\n",
" data = pickle.load(file)\n",
"\n",
"print(type(data), len(data))\n",
"# print(data[0])\n",
"print(type(data[1]))\n",
"print(\"----------------------\")\n",
"for key, _ in data[1].items():\n",
" print(f\"{key}: \")\n",
"\n",
"print(\"-----------------------\")\n",
"AUPRC_list = []\n",
"for i in range(len(data)):\n",
" AUPRC_list.append(data[i][\"valid_auprc\"])\n",
"\n",
"print(\"-----------------------\") \n",
"print(AUPRC_list)\n",
"(\"-----------------------\")\n",
"largest_number = max(AUPRC_list)\n",
"index = AUPRC_list.index(largest_number)\n",
"print(largest_number, index)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"group#1\n",
"\n",
"[0.24092945522182005, 0.3139675367502194, 0.3062163369752217, 0.32297163568130305, 0.3672050308180419, 0.3801609216698969, 0.3915211363523951, 0.4034875773118736, 0.41721359538446234, 0.41755420607909477, 0.4101699028342543, 0.42683222688245664, 0.4338339272938271, 0.4432706404963518, 0.4451886249025738, 0.4436839678451211, 0.46470292201596697, 0.4619959382638624, 0.4389299870874322, 0.4537386141609928, 0.4880276013143086, 0.48964141469390005, 0.49214694908533474, 0.49336784163926267, 0.4978899412041259, 0.4960868620495151, 0.4949812567178974, 0.49875221067947606, 0.4959535547710648, 0.49723019893878023, 0.49849758106937503, 0.5005045769636993, 0.4968324354226746, 0.4985954057932132, 0.4985684464062525, 0.4948398218890804, 0.5003443438290083, 0.49804674478254773, 0.5015115944170082, 0.5043099513157541, 0.5022930844045073, 0.502102123403741, 0.5025587387783707, 0.5026322695878688, 0.5028108420912678, 0.501853319716798, 0.5044486284061104, 0.5043333679462079, 0.503047975296802, 0.5021477867974229]\n",
"\n",
"0.5044486284061104, index: 46\n",
"\n",
"group #2\n",
"\n",
"[0.24668762844932296, 0.31123092790061574, 0.35728718371921886, 0.37858993755415526, 0.38325613445804607, 0.38183540019756823, 0.40688905625255206, 0.4050292403852287, 0.4103841963804383, 0.4288343036036706, 0.4293594683280219, 0.44373329349811874, 0.44694196761428867, 0.44516332505161516, 0.4570591656299683, 0.44925142278910385, 0.45783436251651694, 0.4512008966459152, 0.4628860929136446, 0.46190128250293605, 0.4891415053038087, 0.4933325648723347, 0.49795793473520533, 0.4989478549566136, 0.507199717375493, 0.5031777644234027, 0.5048360591023886, 0.5026344145441939, 0.5070084702134143, 0.50851780828997, 0.5013767142024679, 0.5077028354409389, 0.5073222030725629, 0.5103865617070087, 0.5070321372047399, 0.5069057373554984, 0.5054984338086199, 0.5052088211513525, 0.5085875776438461, 0.5015018579996042, 0.507983738986951, 0.506001318616706, 0.5078548999343991, 0.5084694227173217, 0.5081644743764611, 0.5070537320211395, 0.5072728550164887, 0.5084469401746737, 0.5081580384861908, 0.5092361778552277]\n",
"\n",
"0.5103865617070087, index: 33\n",
"\n",
"group #3\n",
"[0.20546938178065813, 0.31056285598824596, 0.3521164077944065, 0.36566363279169545, 0.3649970330628938, 0.3816742095036071, 0.408841252427171, 0.4192963362391232, 0.419725128897165, 0.4009845215509139, 0.4221866024862177, 0.4383579336817017, 0.41634488480301257, 0.4394011015343916, 0.42674958918677536, 0.4484833626141604, 0.43733868299572076, 0.42813204282903494, 0.44362467579095183, 0.4525213211300688, 0.47993303563958817, 0.48221178536835363, 0.4832912567732829, 0.485964752652683, 0.4894140885779246, 0.49081305081555826, 0.4835906970652839, 0.4881328848995447, 0.49108874994886303, 0.49205732309554323, 0.4918174541861535, 0.49104602501641953, 0.49033495002806987, 0.49255438103140303, 0.4982302563540638, 0.4919847023325378, 0.49138268849817107, 0.49216471663752714, 0.49367968532436873, 0.49558690171904884, 0.4952242601993453, 0.49709259551176815, 0.4969043181087201, 0.49722348299821856, 0.49599951407363857, 0.49572421827303714, 0.49551046935516674, 0.4969339282495756, 0.49522481850002315, 0.4956301125397299]\n",
"\n",
"0.4982302563540638, index: 34\n",
"\n",
"group #4\n",
"\n",
"[0.16705442847351432, 0.2811237847091236, 0.3227277423619332, 0.3459164670019608, 0.3433205542817934, 0.38953865811323535, 0.40093825754134493, 0.4042482476980622, 0.4179255247142833, 0.42026119275049384, 0.415263850960453, 0.4326573070148512, 0.4284856196846552, 0.455811861263988, 0.44742754829379755, 0.4428520431746461, 0.4288860834282809, 0.43801462440444205, 0.441347802107846, 0.4560878428908129, 0.47952984096244766, 0.4859939647185739, 0.48291741623601653, 0.4863560035613435, 0.4879069301596515, 0.49283878286572264, 0.4925634321692941, 0.49296767067476266, 0.4925321693215088, 0.4930295366233496, 0.4927986378984127, 0.49612537918838245, 0.4992350455119594, 0.4951830005033058, 0.49014993853897326, 0.4924448141210762, 0.4945801109607605, 0.4971188401719394, 0.49753234729288465, 0.49315691206981155, 0.4963229926370793, 0.49660539254449804, 0.49752930191373473, 0.4983978705842285, 0.498218560630721, 0.49778016282127696, 0.4980937334749714, 0.4982398417549309, 0.49825272820647715, 0.4978916971990578]\n",
"\n",
"0.4992350455119594, index: 32\n",
"\n",
"group #5\n",
"[0.20795198881124255, 0.2924131615408049, 0.31194815399388126, 0.357671229080611, 0.3907590012977773, 0.39197022751675975, 0.39688932315376796, 0.41098642756821824, 0.4280303875603716, 0.4251116328825386, 0.41492397254078656, 0.44119503399957305, 0.42866565608661766, 0.42155615910506705, 0.4352771610735857, 0.4355309812927433, 0.4575302940022513, 0.4621060999031488, 0.4615244295921646, 0.4347042141353311, 0.4843673460502776, 0.49216570578173724, 0.49284316077316226, 0.4976730562122618, 0.4981241668777771, 0.4985906269863735, 0.5023674118168958, 0.5039947051779108, 0.5025596400291938, 0.501332454384853, 0.5017141509761979, 0.5033696471830942, 0.5035807094153067, 0.5044712423289812, 0.49912591150498187, 0.5036493639939076, 0.5073756144905568, 0.5066738446153692, 0.5041024684427422, 0.5061074251973712, 0.5079663458037375, 0.5080434717076571, 0.5071731389137064, 0.5066158069067092, 0.5059333249321385, 0.5078252460128987, 0.5081895157894929, 0.5079278975582764, 0.5073543066159428, 0.5078677916025073]\n",
"\n",
"0.5081895157894929, index: 46\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"A0004.hea\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 17651/17651 [00:02<00:00, 6737.50it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"164889003 1051.0\n",
"164890007 1675.0\n",
"6374002 103.0\n",
"426627000 59.0\n",
"733534002 299.0\n",
"713427006 963.0\n",
"270492004 706.0\n",
"713426002 372.0\n",
"39732003 1526.0\n",
"445118002 437.0\n",
"164947007 74.0\n",
"251146004 320.0\n",
"111975006 382.0\n",
"698252002 354.0\n",
"426783006 5794.0\n",
"284470004 653.0\n",
"10370003 296.0\n",
"365413008 120.0\n",
"427172004 387.0\n",
"164917005 415.0\n",
"47665007 256.0\n",
"427393009 758.0\n",
"426177001 3784.0\n",
"427084000 1932.0\n",
"164934002 2343.0\n",
"59931005 798.0\n",
"dtype: float64\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/138 [00:00<?, ?it/s]"
]
}
],
"source": [
"import torch\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"from sklearn.metrics import average_precision_score, roc_auc_score, f1_score\n",
"import pandas as pd\n",
"from dataset import dataset\n",
"from torch.utils.data import DataLoader\n",
"from model import NN\n",
"import pickle\n",
"\n",
"\n",
"DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n",
"DEVICE = 'cpu'\n",
"\n",
"address = \"./model_output/model_group5/PROGRESS.pickle\"\n",
"\n",
"with open(address, 'rb') as file:\n",
" data = pickle.load(file)\n",
"\n",
"new_state_dict = data[46]['model']\n",
"\n",
"def collate(batch):\n",
"\n",
" ch = batch[0][0].shape[0]\n",
" maxL = 8192\n",
" X = np.zeros((len(batch), ch, maxL))\n",
" \n",
" for i in range(len(batch)):\n",
" X[i, :, -batch[i][0].shape[-1]:] = batch[i][0]\n",
" \n",
" t = np.array([b[1] for b in batch])\n",
" l = np.concatenate([b[2].reshape(1,12) for b in batch], axis=0)\n",
"\n",
" X = torch.from_numpy(X)\n",
" t = torch.from_numpy(t)\n",
" l = torch.from_numpy(l)\n",
" return X, t, l\n",
"\n",
"def valid_part(model, dataset):\n",
" targets = []\n",
" outputs = []\n",
" model.eval()\n",
" with torch.no_grad():\n",
" for i, (x, t, l) in enumerate(tqdm(dataset)):\n",
" x = x.unsqueeze(2).float().to(DEVICE)\n",
" t = t.to(DEVICE)\n",
" l = l.float().to(DEVICE)\n",
"\n",
" y,p = model(x, l)\n",
" #p = torch.sigmoid(y)\n",
"\n",
" targets.append(t.data.cpu().numpy())\n",
" outputs.append(p.data.cpu().numpy())\n",
" \n",
" targets = np.concatenate(targets, axis=0)\n",
" outputs = np.concatenate(outputs, axis=0)\n",
" auprc = average_precision_score(y_true=targets, y_score=outputs)\n",
" auroc = roc_auc_score(targets, outputs)\n",
"\n",
" outputs_f1 = np.array([[(1 if prob > 0.5 else 0) for prob in probs] for probs in np.array(outputs)])\n",
" f1 = f1_score(targets, outputs_f1, average='weighted')\n",
" print(\"This is the auroc of testing:\", auroc)\n",
" print(\"This is the f1 of testing:\", f1)\n",
"\n",
" return auprc, targets, outputs, auroc, f1\n",
"\n",
"file_address = \"../collection_of_all_datasets/\"\n",
"data_directory = \"./csv-file/training_validation_testing/group5\"\n",
"\n",
"############ testing area #########################\n",
"the_testing_address = data_directory + \"/testing_group\"+data_directory[-1]+\".csv\"\n",
"df = pd.read_csv(the_testing_address)\n",
"print(df['Name'][0])\n",
"\n",
"testing_header_files=[]\n",
"\n",
"for i in range(len(df['Name'])):\n",
" each_header_file = file_address + df['Name'][i]\n",
" testing_header_files.append(each_header_file)\n",
" \n",
"test_dataset = dataset(testing_header_files)\n",
"print(test_dataset.summary('pandas'))\n",
" \n",
"\n",
"test_dataset.num_leads = 12\n",
"test_dataset.sample = True\n",
"###################################################\n",
"valid = DataLoader(dataset=test_dataset,\n",
" batch_size=128,\n",
" shuffle=False,\n",
" num_workers=8,\n",
" collate_fn=collate,\n",
" pin_memory=True,\n",
" drop_last=False)\n",
"\n",
"model = NN(nOUT=26).to(DEVICE)\n",
"model.load_state_dict(new_state_dict)\n",
"\n",
"auprc, targets, outputs, auroc, f1 = valid_part(model, valid)\n",
"print(\"============================================\")\n",
"print(\"This is the auprc:\", auprc)\n",
"print(\"This is the auroc:\", auroc)\n",
"print(\"This is the f1: \", f1)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### AUPRC Checking for the 12-lead"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'list'> 70\n",
"<class 'dict'>\n",
"----------------------\n",
"epoch: \n",
"model: \n",
"train_auprc: \n",
"valid_auprc: \n",
"valid_auroc: \n",
"valid_targets: \n",
"valid_outputs: \n",
"-----------------------\n",
"-----------------------\n",
"[0.28910033219670556, 0.36661018186269884, 0.4050706458985195, 0.42316484282838984, 0.43350053497280694, 0.44553479020425846, 0.44136231989079977, 0.45122218897758415, 0.4644021743158985, 0.47293826752021145, 0.46926146531955976, 0.467247872269531, 0.4700967180951104, 0.4788817392392415, 0.467775651905869, 0.48255573911671956, 0.477212325777135, 0.4800058433950016, 0.4915499891655736, 0.48971557432198565, 0.5141404510781854, 0.5219609044964516, 0.5230429753848443, 0.5232866664000654, 0.5244318076853925, 0.5234401986426129, 0.5263752664655873, 0.5281336596938361, 0.528075972755201, 0.5302334312309755, 0.5307301559051676, 0.5304267506928821, 0.5318235204566354, 0.5306493348295291, 0.5350866957700305, 0.5345539436367677, 0.5360092534376171, 0.5331738336457497, 0.5317614713309697, 0.535248967523321, 0.5404416392354089, 0.540938736266318, 0.5408833722750755, 0.5412477678363515, 0.5417516390629749, 0.5412621901602691, 0.5420153503382734, 0.5413120998587926, 0.5421420766388778, 0.5429929117370075, 0.5426979188589047, 0.5427578748612708, 0.542525766866879, 0.5422344779496736, 0.542579324978226, 0.5435324050712601, 0.5427155565657983, 0.5432355489935663, 0.5430772835279998, 0.5435757517477243, 0.543233155585495, 0.5437444745165606, 0.5433336568324321, 0.543740825076081, 0.543418673099526, 0.5436833187473836, 0.5439772667518001, 0.5442283931779751, 0.5438852947464646, 0.5438798138010161]\n",
"0.5442283931779751 67\n",
"This is the largest auroc: 0.8730646472382316\n"
]
}
],
"source": [
"import pickle\n",
"import torch\n",
"\n",
"address = \"./model_output_12_lead_without_attention/model_group5/PROGRESS.pickle\"\n",
"\n",
"with open(address, 'rb') as file:\n",
" data = pickle.load(file)\n",
"\n",
"print(type(data), len(data))\n",
"\n",
"print(type(data[1]))\n",
"print(\"----------------------\")\n",
"for key, _ in data[1].items():\n",
" print(f\"{key}: \")\n",
"\n",
"print(\"-----------------------\")\n",
"AUPRC_list = []\n",
"AUROC_list = []\n",
"\n",
"for i in range(len(data)):\n",
" AUPRC_list.append(data[i][\"valid_auprc\"])\n",
"\n",
"for i in range(len(data)):\n",
" AUROC_list.append(data[i][\"valid_auroc\"])\n",
"\n",
"print(\"-----------------------\") \n",
"print(AUPRC_list)\n",
"(\"-----------------------\")\n",
"largest_number = max(AUPRC_list)\n",
"index = AUPRC_list.index(largest_number)\n",
"print(largest_number, index)\n",
"print(\"This is the largest auroc:\", AUROC_list[index])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "testing",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|