|
from huggingface_hub import * |
|
|
|
|
|
import pandas as pd |
|
|
|
from datasets import load_dataset |
|
|
|
|
|
df_train = pd.read_csv("/home/prafull/apps_all/flan_tuning/FlanT5-train-test-idiomSimplifier.csv") |
|
complex_sentences = df_train["Idiom sentences"].to_list() |
|
simple_sentences = df_train["English casual"].to_list() |
|
|
|
data_dict = { |
|
"dialogue": complex_sentences, |
|
"summary": simple_sentences |
|
} |
|
|
|
df_train_new = pd.DataFrame(data_dict) |
|
|
|
df_train_shuffled = df_train_new.sample(frac = 1, random_state=1) |
|
|
|
df_train_shuffled.head(1000).to_csv("dialog_summary.csv", encoding="utf-8", index=False) |
|
|
|
dataset = load_dataset("csv", data_files="dialog_summary.csv", split='train') |
|
|
|
dataset = dataset.train_test_split(test_size=0.05) |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
model_id="google/flan-t5-base" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
from datasets import concatenate_datasets |
|
|
|
|
|
|
|
tokenized_inputs = concatenate_datasets([dataset["train"], dataset["test"]]).map(lambda x: tokenizer(x["dialogue"], truncation=True), batched=True, remove_columns=["dialogue", "summary"]) |
|
max_source_length = max([len(x) for x in tokenized_inputs["input_ids"]]) |
|
print(f"Max source length: {max_source_length}") |
|
|
|
max_target_length = max_source_length + 10 |
|
print(f"Max Target length: {max_target_length}") |
|
|
|
|
|
def preprocess_function(sample,padding="max_length"): |
|
|
|
inputs = ["Easy to understand Sentence without idioms and jargons: " + item for item in sample["dialogue"]] |
|
|
|
|
|
model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True) |
|
|
|
|
|
labels = tokenizer(text_target=sample["summary"], max_length=max_target_length, padding=padding, truncation=True) |
|
|
|
|
|
|
|
if padding == "max_length": |
|
labels["input_ids"] = [ |
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] |
|
] |
|
|
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
tokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=["dialogue", "summary"]) |
|
print(f"Keys of tokenized dataset: {list(tokenized_dataset['train'].features)}") |
|
|
|
|
|
from transformers import AutoModelForSeq2SeqLM |
|
|
|
|
|
model_id="google/flan-t5-base" |
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) |
|
|
|
import evaluate |
|
import nltk |
|
import numpy as np |
|
from nltk.tokenize import sent_tokenize |
|
|
|
|
|
metric = evaluate.load("rouge") |
|
|
|
|
|
def postprocess_text(preds, labels): |
|
preds = [pred.strip() for pred in preds] |
|
labels = [label.strip() for label in labels] |
|
|
|
|
|
preds = ["\n".join(sent_tokenize(pred)) for pred in preds] |
|
labels = ["\n".join(sent_tokenize(label)) for label in labels] |
|
|
|
return preds, labels |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
if isinstance(preds, tuple): |
|
preds = preds[0] |
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) |
|
|
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) |
|
result = {k: round(v * 100, 4) for k, v in result.items()} |
|
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] |
|
result["gen_len"] = np.mean(prediction_lens) |
|
return result |
|
|
|
|
|
from transformers import DataCollatorForSeq2Seq |
|
|
|
|
|
label_pad_token_id = -100 |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, |
|
model=model, |
|
label_pad_token_id=label_pad_token_id, |
|
pad_to_multiple_of=8 |
|
) |
|
|
|
import torch |
|
|
|
torch.cuda.set_device(0) |
|
print(torch.cuda.current_device()) |
|
|
|
from huggingface_hub import HfFolder |
|
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments |
|
|
|
|
|
|
|
repository_id = f"flan-tuning" |
|
|
|
|
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
overwrite_output_dir=True, |
|
output_dir=repository_id, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
predict_with_generate=True, |
|
fp16=False, |
|
learning_rate=5e-5, |
|
num_train_epochs=1, |
|
|
|
logging_dir=f"{repository_id}/logs", |
|
logging_strategy="steps", |
|
logging_steps=500, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
save_total_limit=2, |
|
load_best_model_at_end=True, |
|
|
|
|
|
report_to="tensorboard", |
|
push_to_hub=False, |
|
hub_strategy="every_save", |
|
hub_model_id=repository_id, |
|
hub_token=HfFolder.get_token(), |
|
) |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
data_collator=data_collator, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["test"], |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer.save_pretrained(repository_id) |
|
trainer.create_model_card() |
|
|
|
trainer.push_to_hub() |