|
import os |
|
import json |
|
from functools import lru_cache |
|
|
|
from transformers.utils import logging |
|
from typing import Dict, List, Optional, Union, Tuple |
|
|
|
from sentencepiece import SentencePieceProcessor |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
SPIECE_UNDERLINE = "▁" |
|
|
|
|
|
SPECIAL_TAGS = frozenset( |
|
{ |
|
"asm_Beng", |
|
"awa_Deva", |
|
"ben_Beng", |
|
"bho_Deva", |
|
"brx_Deva", |
|
"doi_Deva", |
|
"eng_Latn", |
|
"gom_Deva", |
|
"gon_Deva", |
|
"guj_Gujr", |
|
"hin_Deva", |
|
"hne_Deva", |
|
"kan_Knda", |
|
"kas_Arab", |
|
"kas_Deva", |
|
"kha_Latn", |
|
"lus_Latn", |
|
"mag_Deva", |
|
"mai_Deva", |
|
"mal_Mlym", |
|
"mar_Deva", |
|
"mni_Beng", |
|
"mni_Mtei", |
|
"npi_Deva", |
|
"ory_Orya", |
|
"pan_Guru", |
|
"san_Deva", |
|
"sat_Olck", |
|
"snd_Arab", |
|
"snd_Deva", |
|
"tam_Taml", |
|
"tel_Telu", |
|
"urd_Arab", |
|
"unr_Deva", |
|
} |
|
) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"src_vocab_fp": "dict.SRC.json", |
|
"tgt_vocab_fp": "dict.TGT.json", |
|
"src_spm_fp": "model.SRC", |
|
"tgt_spm_fp": "model.TGT", |
|
} |
|
|
|
|
|
class IndicTransTokenizer(PreTrainedTokenizer): |
|
_added_tokens_encoder: Dict[str, int] = {} |
|
_added_tokens_decoder: Dict[str, int] = {} |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
src_vocab_fp=None, |
|
tgt_vocab_fp=None, |
|
src_spm_fp=None, |
|
tgt_spm_fp=None, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token="<pad>", |
|
do_lower_case=False, |
|
**kwargs, |
|
): |
|
self.src_vocab_fp = src_vocab_fp |
|
self.tgt_vocab_fp = tgt_vocab_fp |
|
self.src_spm_fp = src_spm_fp |
|
self.tgt_spm_fp = tgt_spm_fp |
|
|
|
|
|
self.unk_token = ( |
|
hasattr(unk_token, "content") and unk_token.content or unk_token |
|
) |
|
self.pad_token = ( |
|
hasattr(pad_token, "content") and pad_token.content or pad_token |
|
) |
|
self.eos_token = ( |
|
hasattr(eos_token, "content") and eos_token.content or eos_token |
|
) |
|
self.bos_token = ( |
|
hasattr(bos_token, "content") and bos_token.content or bos_token |
|
) |
|
|
|
|
|
self.src_encoder = self._load_json(self.src_vocab_fp) |
|
self.tgt_encoder = self._load_json(self.tgt_vocab_fp) |
|
|
|
|
|
if self.unk_token not in self.src_encoder: |
|
raise KeyError("<unk> token must be in vocab") |
|
if self.pad_token not in self.src_encoder: |
|
raise KeyError("<pad> token must be in vocab") |
|
|
|
|
|
self.src_decoder = {v: k for k, v in self.src_encoder.items()} |
|
self.tgt_decoder = {v: k for k, v in self.tgt_encoder.items()} |
|
|
|
|
|
self.src_spm = self._load_spm(self.src_spm_fp) |
|
self.tgt_spm = self._load_spm(self.tgt_spm_fp) |
|
|
|
|
|
self._switch_to_input_mode() |
|
|
|
|
|
self.unk_token_id = self.src_encoder[self.unk_token] |
|
self.pad_token_id = self.src_encoder[self.pad_token] |
|
self.eos_token_id = self.src_encoder[self.eos_token] |
|
self.bos_token_id = self.src_encoder[self.bos_token] |
|
|
|
super().__init__( |
|
src_vocab_file=self.src_vocab_fp, |
|
tgt_vocab_file=self.src_vocab_fp, |
|
do_lower_case=do_lower_case, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
**kwargs, |
|
) |
|
|
|
def add_new_special_tags(self, new_tags: List[str]) -> None: |
|
global SPECIAL_TAGS |
|
SPECIAL_TAGS = frozenset(SPECIAL_TAGS | set(new_tags)) |
|
|
|
def _switch_to_input_mode(self) -> None: |
|
self.spm = self.src_spm |
|
self.padding_side = "left" |
|
self.encoder = self.src_encoder |
|
self.decoder = self.src_decoder |
|
self._tokenize = self._src_tokenize |
|
|
|
def _switch_to_target_mode(self) -> None: |
|
self.spm = self.tgt_spm |
|
self.padding_side = "right" |
|
self.encoder = self.tgt_encoder |
|
self.decoder = self.tgt_decoder |
|
self._tokenize = self._tgt_tokenize |
|
|
|
@staticmethod |
|
def _load_spm(path: str) -> SentencePieceProcessor: |
|
return SentencePieceProcessor(model_file=path) |
|
|
|
@staticmethod |
|
def _save_json(data: Union[Dict, List], path: str) -> None: |
|
with open(path, "w", encoding="utf-8") as f: |
|
json.dump(data, f, indent=2) |
|
|
|
@staticmethod |
|
def _load_json(path: str) -> Union[Dict, List]: |
|
with open(path, "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
|
|
@property |
|
def src_vocab_size(self) -> int: |
|
return len(self.src_encoder) |
|
|
|
@property |
|
def tgt_vocab_size(self) -> int: |
|
return len(self.tgt_encoder) |
|
|
|
def get_src_vocab(self) -> Dict[str, int]: |
|
return dict(self.src_encoder, **self.added_tokens_encoder) |
|
|
|
def get_tgt_vocab(self) -> Dict[str, int]: |
|
return dict(self.tgt_encoder, **self.added_tokens_decoder) |
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
return self.get_src_vocab() |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return self.src_vocab_size |
|
|
|
@lru_cache(maxsize=10240) |
|
def _convert_token_to_id(self, token: str) -> int: |
|
return self.encoder.get(token, self.unk_token_id) |
|
|
|
@lru_cache(maxsize=10240) |
|
def _convert_id_to_token(self, index: int) -> str: |
|
return self.decoder.get(index, self.unk_token) |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
return "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() |
|
|
|
def _src_tokenize(self, text: str) -> List[str]: |
|
src_lang, tgt_lang, text = text.split(" ", 2) |
|
return [src_lang, tgt_lang] + self.spm.EncodeAsPieces(text) |
|
|
|
def _tgt_tokenize(self, text: str) -> List[str]: |
|
return self.spm.EncodeAsPieces(text) |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
spaces_between_special_tokens: bool = True, |
|
**kwargs, |
|
) -> str: |
|
self._switch_to_target_mode() |
|
decoded_token_ids = super()._decode( |
|
token_ids=token_ids, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
spaces_between_special_tokens=spaces_between_special_tokens, |
|
**kwargs, |
|
) |
|
self._switch_to_input_mode() |
|
return decoded_token_ids |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
return token_ids_0 + [self.eos_token_id] |
|
|
|
def save_vocabulary( |
|
self, save_directory: str, filename_prefix: Optional[str] = None |
|
) -> Tuple[str, ...]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return () |
|
|
|
src_spm_fp = os.path.join(save_directory, "model.SRC") |
|
tgt_spm_fp = os.path.join(save_directory, "model.TGT") |
|
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json") |
|
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json") |
|
|
|
self._save_json(self.src_encoder, src_vocab_fp) |
|
self._save_json(self.tgt_encoder, tgt_vocab_fp) |
|
|
|
for fp, spm in [(src_spm_fp, self.src_spm), (tgt_spm_fp, self.tgt_spm)]: |
|
with open(fp, "wb") as f: |
|
f.write(spm.serialized_model_proto()) |
|
|
|
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp |