File size: 7,936 Bytes
8251370
 
4372577
8251370
4372577
8251370
 
 
 
 
 
 
 
 
 
4372577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8251370
 
 
 
 
 
 
 
 
 
4372577
 
8251370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4372577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8251370
4372577
 
8251370
4372577
 
8251370
4372577
 
 
8251370
4372577
8251370
 
 
4372577
 
8251370
4372577
 
 
 
 
8251370
 
 
5f70327
8251370
 
 
 
 
 
 
 
4372577
 
 
8251370
4372577
 
8251370
4372577
 
 
8251370
4372577
 
8251370
4372577
 
 
8251370
4372577
 
8251370
 
4372577
 
8251370
 
 
4372577
 
8251370
 
 
 
 
4372577
8251370
 
 
4372577
8251370
 
4372577
8251370
 
4372577
8251370
 
 
 
 
 
 
 
 
4372577
8251370
 
4372577
8251370
 
4372577
8251370
4372577
 
 
8251370
4372577
 
8251370
4372577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8251370
4372577
 
8251370
 
 
 
4372577
8251370
 
 
4372577
8251370
 
4372577
8251370
 
 
 
 
 
4372577
 
8251370
4372577
 
 
8251370
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import json
from functools import lru_cache

from transformers.utils import logging
from typing import Dict, List, Optional, Union, Tuple

from sentencepiece import SentencePieceProcessor
from transformers.tokenization_utils import PreTrainedTokenizer


logger = logging.get_logger(__name__)

SPIECE_UNDERLINE = "▁"

# Convert SPECIAL_TAGS to a frozen set for faster lookups
SPECIAL_TAGS = frozenset(
    {
        "asm_Beng",
        "awa_Deva",
        "ben_Beng",
        "bho_Deva",
        "brx_Deva",
        "doi_Deva",
        "eng_Latn",
        "gom_Deva",
        "gon_Deva",
        "guj_Gujr",
        "hin_Deva",
        "hne_Deva",
        "kan_Knda",
        "kas_Arab",
        "kas_Deva",
        "kha_Latn",
        "lus_Latn",
        "mag_Deva",
        "mai_Deva",
        "mal_Mlym",
        "mar_Deva",
        "mni_Beng",
        "mni_Mtei",
        "npi_Deva",
        "ory_Orya",
        "pan_Guru",
        "san_Deva",
        "sat_Olck",
        "snd_Arab",
        "snd_Deva",
        "tam_Taml",
        "tel_Telu",
        "urd_Arab",
        "unr_Deva",
    }
)

VOCAB_FILES_NAMES = {
    "src_vocab_fp": "dict.SRC.json",
    "tgt_vocab_fp": "dict.TGT.json",
    "src_spm_fp": "model.SRC",
    "tgt_spm_fp": "model.TGT",
}


class IndicTransTokenizer(PreTrainedTokenizer):
    _added_tokens_encoder: Dict[str, int] = {}
    _added_tokens_decoder: Dict[str, int] = {}
    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        src_vocab_fp=None,
        tgt_vocab_fp=None,
        src_spm_fp=None,
        tgt_spm_fp=None,
        unk_token="<unk>",
        bos_token="<s>",
        eos_token="</s>",
        pad_token="<pad>",
        do_lower_case=False,
        **kwargs,
    ):
        self.src_vocab_fp = src_vocab_fp
        self.tgt_vocab_fp = tgt_vocab_fp
        self.src_spm_fp = src_spm_fp
        self.tgt_spm_fp = tgt_spm_fp

        # Store token content directly instead of accessing .content
        self.unk_token = (
            hasattr(unk_token, "content") and unk_token.content or unk_token
        )
        self.pad_token = (
            hasattr(pad_token, "content") and pad_token.content or pad_token
        )
        self.eos_token = (
            hasattr(eos_token, "content") and eos_token.content or eos_token
        )
        self.bos_token = (
            hasattr(bos_token, "content") and bos_token.content or bos_token
        )

        # Load vocabularies
        self.src_encoder = self._load_json(self.src_vocab_fp)
        self.tgt_encoder = self._load_json(self.tgt_vocab_fp)

        # Validate tokens
        if self.unk_token not in self.src_encoder:
            raise KeyError("<unk> token must be in vocab")
        if self.pad_token not in self.src_encoder:
            raise KeyError("<pad> token must be in vocab")

        # Pre-compute reverse mappings
        self.src_decoder = {v: k for k, v in self.src_encoder.items()}
        self.tgt_decoder = {v: k for k, v in self.tgt_encoder.items()}

        # Load SPM models
        self.src_spm = self._load_spm(self.src_spm_fp)
        self.tgt_spm = self._load_spm(self.tgt_spm_fp)

        # Initialize current settings
        self._switch_to_input_mode()

        # Cache token IDs
        self.unk_token_id = self.src_encoder[self.unk_token]
        self.pad_token_id = self.src_encoder[self.pad_token]
        self.eos_token_id = self.src_encoder[self.eos_token]
        self.bos_token_id = self.src_encoder[self.bos_token]

        super().__init__(
            src_vocab_file=self.src_vocab_fp,
            tgt_vocab_file=self.tgt_vocab_fp,
            do_lower_case=do_lower_case,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            **kwargs,
        )

    def add_new_special_tags(self, new_tags: List[str]) -> None:
        global SPECIAL_TAGS
        SPECIAL_TAGS = frozenset(SPECIAL_TAGS | set(new_tags))

    def _switch_to_input_mode(self) -> None:
        self.spm = self.src_spm
        self.padding_side = "left"
        self.encoder = self.src_encoder
        self.decoder = self.src_decoder
        self._tokenize = self._src_tokenize

    def _switch_to_target_mode(self) -> None:
        self.spm = self.tgt_spm
        self.padding_side = "right"
        self.encoder = self.tgt_encoder
        self.decoder = self.tgt_decoder
        self._tokenize = self._tgt_tokenize

    @staticmethod
    def _load_spm(path: str) -> SentencePieceProcessor:
        return SentencePieceProcessor(model_file=path)

    @staticmethod
    def _save_json(data: Union[Dict, List], path: str) -> None:
        with open(path, "w", encoding="utf-8") as f:
            json.dump(data, f, indent=2)

    @staticmethod
    def _load_json(path: str) -> Union[Dict, List]:
        with open(path, "r", encoding="utf-8") as f:
            return json.load(f)

    @property
    def src_vocab_size(self) -> int:
        return len(self.src_encoder)

    @property
    def tgt_vocab_size(self) -> int:
        return len(self.tgt_encoder)

    def get_src_vocab(self) -> Dict[str, int]:
        return dict(self.src_encoder, **self.added_tokens_encoder)

    def get_tgt_vocab(self) -> Dict[str, int]:
        return dict(self.tgt_encoder, **self.added_tokens_decoder)

    def get_vocab(self) -> Dict[str, int]:
        return self.get_src_vocab()

    @property
    def vocab_size(self) -> int:
        return self.src_vocab_size

    def _convert_token_to_id(self, token: str) -> int:
        return self.encoder.get(token, self.unk_token_id)

    def _convert_id_to_token(self, index: int) -> str:
        return self.decoder.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        return "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()

    def _src_tokenize(self, text: str) -> List[str]:
        src_lang, tgt_lang, text = text.split(" ", 2)
        return [src_lang, tgt_lang] + self.spm.EncodeAsPieces(text)

    def _tgt_tokenize(self, text: str) -> List[str]:
        return self.spm.EncodeAsPieces(text)

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        spaces_between_special_tokens: bool = True,
        **kwargs,
    ) -> str:
        self._switch_to_target_mode()
        decoded_token_ids = super()._decode(
            token_ids=token_ids,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            spaces_between_special_tokens=spaces_between_special_tokens,
            **kwargs,
        )
        self._switch_to_input_mode()
        return decoded_token_ids

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        return token_ids_0 + [self.eos_token_id]

    def save_vocabulary(
        self, save_directory: str, filename_prefix: Optional[str] = None
    ) -> Tuple[str, ...]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return ()

        src_spm_fp = os.path.join(save_directory, "model.SRC")
        tgt_spm_fp = os.path.join(save_directory, "model.TGT")
        src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
        tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")

        self._save_json(self.src_encoder, src_vocab_fp)
        self._save_json(self.tgt_encoder, tgt_vocab_fp)

        for fp, spm in [(src_spm_fp, self.src_spm), (tgt_spm_fp, self.tgt_spm)]:
            with open(fp, "wb") as f:
                f.write(spm.serialized_model_proto())

        return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp