File size: 7,936 Bytes
8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 5f70327 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 4372577 8251370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import json
from functools import lru_cache
from transformers.utils import logging
from typing import Dict, List, Optional, Union, Tuple
from sentencepiece import SentencePieceProcessor
from transformers.tokenization_utils import PreTrainedTokenizer
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
# Convert SPECIAL_TAGS to a frozen set for faster lookups
SPECIAL_TAGS = frozenset(
{
"asm_Beng",
"awa_Deva",
"ben_Beng",
"bho_Deva",
"brx_Deva",
"doi_Deva",
"eng_Latn",
"gom_Deva",
"gon_Deva",
"guj_Gujr",
"hin_Deva",
"hne_Deva",
"kan_Knda",
"kas_Arab",
"kas_Deva",
"kha_Latn",
"lus_Latn",
"mag_Deva",
"mai_Deva",
"mal_Mlym",
"mar_Deva",
"mni_Beng",
"mni_Mtei",
"npi_Deva",
"ory_Orya",
"pan_Guru",
"san_Deva",
"sat_Olck",
"snd_Arab",
"snd_Deva",
"tam_Taml",
"tel_Telu",
"urd_Arab",
"unr_Deva",
}
)
VOCAB_FILES_NAMES = {
"src_vocab_fp": "dict.SRC.json",
"tgt_vocab_fp": "dict.TGT.json",
"src_spm_fp": "model.SRC",
"tgt_spm_fp": "model.TGT",
}
class IndicTransTokenizer(PreTrainedTokenizer):
_added_tokens_encoder: Dict[str, int] = {}
_added_tokens_decoder: Dict[str, int] = {}
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
src_vocab_fp=None,
tgt_vocab_fp=None,
src_spm_fp=None,
tgt_spm_fp=None,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
do_lower_case=False,
**kwargs,
):
self.src_vocab_fp = src_vocab_fp
self.tgt_vocab_fp = tgt_vocab_fp
self.src_spm_fp = src_spm_fp
self.tgt_spm_fp = tgt_spm_fp
# Store token content directly instead of accessing .content
self.unk_token = (
hasattr(unk_token, "content") and unk_token.content or unk_token
)
self.pad_token = (
hasattr(pad_token, "content") and pad_token.content or pad_token
)
self.eos_token = (
hasattr(eos_token, "content") and eos_token.content or eos_token
)
self.bos_token = (
hasattr(bos_token, "content") and bos_token.content or bos_token
)
# Load vocabularies
self.src_encoder = self._load_json(self.src_vocab_fp)
self.tgt_encoder = self._load_json(self.tgt_vocab_fp)
# Validate tokens
if self.unk_token not in self.src_encoder:
raise KeyError("<unk> token must be in vocab")
if self.pad_token not in self.src_encoder:
raise KeyError("<pad> token must be in vocab")
# Pre-compute reverse mappings
self.src_decoder = {v: k for k, v in self.src_encoder.items()}
self.tgt_decoder = {v: k for k, v in self.tgt_encoder.items()}
# Load SPM models
self.src_spm = self._load_spm(self.src_spm_fp)
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
# Initialize current settings
self._switch_to_input_mode()
# Cache token IDs
self.unk_token_id = self.src_encoder[self.unk_token]
self.pad_token_id = self.src_encoder[self.pad_token]
self.eos_token_id = self.src_encoder[self.eos_token]
self.bos_token_id = self.src_encoder[self.bos_token]
super().__init__(
src_vocab_file=self.src_vocab_fp,
tgt_vocab_file=self.tgt_vocab_fp,
do_lower_case=do_lower_case,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
def add_new_special_tags(self, new_tags: List[str]) -> None:
global SPECIAL_TAGS
SPECIAL_TAGS = frozenset(SPECIAL_TAGS | set(new_tags))
def _switch_to_input_mode(self) -> None:
self.spm = self.src_spm
self.padding_side = "left"
self.encoder = self.src_encoder
self.decoder = self.src_decoder
self._tokenize = self._src_tokenize
def _switch_to_target_mode(self) -> None:
self.spm = self.tgt_spm
self.padding_side = "right"
self.encoder = self.tgt_encoder
self.decoder = self.tgt_decoder
self._tokenize = self._tgt_tokenize
@staticmethod
def _load_spm(path: str) -> SentencePieceProcessor:
return SentencePieceProcessor(model_file=path)
@staticmethod
def _save_json(data: Union[Dict, List], path: str) -> None:
with open(path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
@staticmethod
def _load_json(path: str) -> Union[Dict, List]:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
@property
def src_vocab_size(self) -> int:
return len(self.src_encoder)
@property
def tgt_vocab_size(self) -> int:
return len(self.tgt_encoder)
def get_src_vocab(self) -> Dict[str, int]:
return dict(self.src_encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self) -> Dict[str, int]:
return dict(self.tgt_encoder, **self.added_tokens_decoder)
def get_vocab(self) -> Dict[str, int]:
return self.get_src_vocab()
@property
def vocab_size(self) -> int:
return self.src_vocab_size
def _convert_token_to_id(self, token: str) -> int:
return self.encoder.get(token, self.unk_token_id)
def _convert_id_to_token(self, index: int) -> str:
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
def _src_tokenize(self, text: str) -> List[str]:
src_lang, tgt_lang, text = text.split(" ", 2)
return [src_lang, tgt_lang] + self.spm.EncodeAsPieces(text)
def _tgt_tokenize(self, text: str) -> List[str]:
return self.spm.EncodeAsPieces(text)
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
spaces_between_special_tokens: bool = True,
**kwargs,
) -> str:
self._switch_to_target_mode()
decoded_token_ids = super()._decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
self._switch_to_input_mode()
return decoded_token_ids
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
return token_ids_0 + [self.eos_token_id]
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
) -> Tuple[str, ...]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return ()
src_spm_fp = os.path.join(save_directory, "model.SRC")
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
self._save_json(self.src_encoder, src_vocab_fp)
self._save_json(self.tgt_encoder, tgt_vocab_fp)
for fp, spm in [(src_spm_fp, self.src_spm), (tgt_spm_fp, self.tgt_spm)]:
with open(fp, "wb") as f:
f.write(spm.serialized_model_proto())
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp |