File size: 1,806 Bytes
e2d501d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: rap_phase2_26march_4i
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rap_phase2_26march_4i

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0292

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.3901        | 1.0   | 4056  | 0.1670          |
| 0.1095        | 2.0   | 8112  | 0.0996          |
| 0.0734        | 3.0   | 12168 | 0.0628          |
| 0.2175        | 4.0   | 16224 | 0.2520          |
| 0.022         | 5.0   | 20280 | 0.0460          |
| 0.0139        | 6.0   | 24336 | 0.0371          |
| 0.0121        | 7.0   | 28392 | 0.0321          |
| 0.0144        | 8.0   | 32448 | 0.0348          |
| 0.0041        | 9.0   | 36504 | 0.0283          |
| 0.0013        | 10.0  | 40560 | 0.0327          |
| 0.0           | 11.0  | 44616 | 0.0292          |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0