prakharz commited on
Commit
49525af
·
1 Parent(s): 98e84e4

Upload with huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: alltasks_m1-t1
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # alltasks_m1-t1
14
+
15
+ This model is a fine-tuned version of [yuchenlin/BART0pp](https://huggingface.co/yuchenlin/BART0pp) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.8914
18
+ - Train Runtime: 12625.9615
19
+ - Train Samples Per Second: 57.001
20
+ - Train Steps Per Second: 0.792
21
+ - Train Loss: 1.6667
22
+ - Train Samples: 239899
23
+ - Gen Len: 9.9497
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 9
44
+ - eval_batch_size: 9
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 8
48
+ - total_train_batch_size: 72
49
+ - total_eval_batch_size: 72
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Accuracy | F1 | Recall | Precision | Gen Len |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:--------:|:-------:|:-------:|:---------:|:-------:|
58
+ | 1.9907 | 0.15 | 500 | 2.3435 | 50.3191 | 6.4838 | 49.7719 | 50.0456 | 55.5972 | 55.5972 | 55.5972 | 55.5972 | 8.8197 |
59
+ | 1.9578 | 0.3 | 1000 | 2.0301 | 54.8237 | 7.033 | 54.3422 | 54.4676 | 61.3115 | 61.3115 | 61.3115 | 61.3115 | 8.0583 |
60
+ | 1.8599 | 0.45 | 1500 | 1.9683 | 58.0535 | 6.4621 | 57.5215 | 57.7813 | 66.2295 | 66.2295 | 66.2295 | 66.2295 | 8.1403 |
61
+ | 1.861 | 0.6 | 2000 | 1.9899 | 60.2053 | 6.6431 | 59.6317 | 59.8907 | 69.0867 | 69.0867 | 69.0867 | 69.0867 | 8.4773 |
62
+ | 1.7464 | 0.75 | 2500 | 1.9600 | 61.3403 | 6.6424 | 60.8196 | 61.0684 | 70.726 | 70.726 | 70.726 | 70.726 | 8.4747 |
63
+ | 1.8516 | 0.9 | 3000 | 1.9506 | 59.7834 | 6.4538 | 59.2387 | 59.5396 | 68.8993 | 68.8993 | 68.8993 | 68.8993 | 8.5043 |
64
+ | 1.6371 | 1.05 | 3500 | 1.9415 | 60.9397 | 6.6405 | 60.3836 | 60.6176 | 70.1639 | 70.1639 | 70.1639 | 70.1639 | 8.1427 |
65
+ | 1.643 | 1.2 | 4000 | 1.9433 | 62.7362 | 6.8939 | 62.1572 | 62.4167 | 72.4122 | 72.4122 | 72.4122 | 72.4122 | 7.9857 |
66
+ | 1.6193 | 1.35 | 4500 | 1.9296 | 61.3662 | 6.7287 | 60.8375 | 61.1083 | 70.8197 | 70.8197 | 70.8197 | 70.8197 | 8.4563 |
67
+ | 1.6593 | 1.5 | 5000 | 1.9060 | 63.089 | 6.7619 | 62.5142 | 62.8447 | 73.1616 | 73.1616 | 73.1616 | 73.1616 | 8.42 |
68
+ | 1.6716 | 1.65 | 5500 | 1.9133 | 63.2106 | 6.7486 | 62.5549 | 62.9047 | 73.2553 | 73.2553 | 73.2553 | 73.2553 | 8.362 |
69
+ | 1.5638 | 1.8 | 6000 | 1.8967 | 63.5146 | 6.9202 | 62.9517 | 63.1969 | 73.4895 | 73.4895 | 73.4895 | 73.4895 | 8.28 |
70
+ | 1.5614 | 1.95 | 6500 | 1.8835 | 63.3545 | 6.9092 | 62.7955 | 63.0354 | 73.2084 | 73.2084 | 73.2084 | 73.2084 | 8.2333 |
71
+ | 1.4675 | 2.1 | 7000 | 1.9220 | 63.465 | 6.7168 | 62.9135 | 63.2247 | 73.63 | 73.63 | 73.63 | 73.63 | 8.1323 |
72
+ | 1.4402 | 2.25 | 7500 | 1.9425 | 64.0073 | 7.0859 | 63.4022 | 63.7246 | 73.8642 | 73.8642 | 73.8642 | 73.8642 | 8.1393 |
73
+ | 1.4655 | 2.4 | 8000 | 1.9142 | 64.366 | 6.8629 | 63.7608 | 64.0938 | 74.5667 | 74.5667 | 74.5667 | 74.5667 | 8.1717 |
74
+ | 1.4741 | 2.55 | 8500 | 1.9238 | 64.022 | 6.8364 | 63.4035 | 63.7259 | 74.192 | 74.192 | 74.192 | 74.192 | 8.1777 |
75
+ | 1.4335 | 2.7 | 9000 | 1.9001 | 64.8286 | 6.9507 | 64.159 | 64.5065 | 75.0351 | 75.0351 | 75.0351 | 75.0351 | 8.1387 |
76
+ | 1.5305 | 2.85 | 9500 | 1.8914 | 64.895 | 6.9613 | 64.2636 | 64.5959 | 75.1288 | 75.1288 | 75.1288 | 75.1288 | 8.2063 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.11.0
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1
config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "yuchenlin/BART0pp",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "add_bias_logits": false,
6
+ "add_final_layer_norm": false,
7
+ "architectures": [
8
+ "BartForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.1,
11
+ "bos_token_id": 0,
12
+ "classif_dropout": 0.1,
13
+ "classifier_dropout": 0.0,
14
+ "d_model": 1024,
15
+ "decoder_attention_heads": 16,
16
+ "decoder_ffn_dim": 4096,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 12,
19
+ "decoder_start_token_id": 2,
20
+ "dropout": 0.1,
21
+ "early_stopping": true,
22
+ "encoder_attention_heads": 16,
23
+ "encoder_ffn_dim": 4096,
24
+ "encoder_layerdrop": 0.0,
25
+ "encoder_layers": 12,
26
+ "eos_token_id": 2,
27
+ "force_bos_token_to_be_generated": true,
28
+ "forced_bos_token_id": 0,
29
+ "forced_eos_token_id": 2,
30
+ "gradient_checkpointing": false,
31
+ "id2label": {
32
+ "0": "LABEL_0",
33
+ "1": "LABEL_1",
34
+ "2": "LABEL_2"
35
+ },
36
+ "init_std": 0.02,
37
+ "is_encoder_decoder": true,
38
+ "label2id": {
39
+ "LABEL_0": 0,
40
+ "LABEL_1": 1,
41
+ "LABEL_2": 2
42
+ },
43
+ "max_position_embeddings": 1024,
44
+ "model_type": "bart",
45
+ "no_repeat_ngram_size": 3,
46
+ "normalize_before": false,
47
+ "num_beams": 4,
48
+ "num_hidden_layers": 12,
49
+ "pad_token_id": 1,
50
+ "scale_embedding": false,
51
+ "task_specific_params": {
52
+ "summarization": {
53
+ "length_penalty": 1.0,
54
+ "max_length": 128,
55
+ "min_length": 12,
56
+ "num_beams": 4
57
+ },
58
+ "summarization_cnn": {
59
+ "length_penalty": 2.0,
60
+ "max_length": 142,
61
+ "min_length": 56,
62
+ "num_beams": 4
63
+ },
64
+ "summarization_xsum": {
65
+ "length_penalty": 1.0,
66
+ "max_length": 62,
67
+ "min_length": 11,
68
+ "num_beams": 6
69
+ }
70
+ },
71
+ "torch_dtype": "float32",
72
+ "transformers_version": "4.20.1",
73
+ "use_cache": false,
74
+ "vocab_size": 50265
75
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20bf83f9c7909dd51dadd76deab50d6893f2680b1b886292ab3f3026249bc72d
3
+ size 1625438243
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<s>",
4
+ "cls_token": "<s>",
5
+ "eos_token": "</s>",
6
+ "errors": "replace",
7
+ "mask_token": "<mask>",
8
+ "model_max_length": 1024,
9
+ "name_or_path": "yuchenlin/BART0pp",
10
+ "pad_token": "<pad>",
11
+ "sep_token": "</s>",
12
+ "special_tokens_map_file": null,
13
+ "tokenizer_class": "BartTokenizer",
14
+ "trim_offsets": true,
15
+ "unk_token": "<unk>"
16
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d632afeaeeb7587716b4df852264b7a9b3f2be1fec3b4508440ec8232cc4b26a
3
+ size 4655
vocab.json ADDED
The diff for this file is too large to render. See raw diff