File size: 5,221 Bytes
6e6d07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pos_final_mono_en
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pos_final_mono_en

This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0681
- Precision: 0.9696
- Recall: 0.9714
- F1: 0.9705
- Accuracy: 0.9796

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.99  | 60   | 2.7933          | 0.3216    | 0.0997 | 0.1522 | 0.2833   |
| No log        | 1.99  | 120  | 0.3818          | 0.9075    | 0.8989 | 0.9032 | 0.9224   |
| No log        | 2.99  | 180  | 0.1156          | 0.9602    | 0.9607 | 0.9605 | 0.9721   |
| No log        | 3.99  | 240  | 0.0911          | 0.9634    | 0.9650 | 0.9642 | 0.9748   |
| No log        | 4.99  | 300  | 0.0794          | 0.9664    | 0.9679 | 0.9671 | 0.9772   |
| No log        | 5.99  | 360  | 0.0741          | 0.9670    | 0.9697 | 0.9683 | 0.9781   |
| No log        | 6.99  | 420  | 0.0695          | 0.9683    | 0.9702 | 0.9693 | 0.9787   |
| No log        | 7.99  | 480  | 0.0688          | 0.9686    | 0.9700 | 0.9693 | 0.9789   |
| 0.7281        | 8.99  | 540  | 0.0675          | 0.9688    | 0.9703 | 0.9695 | 0.9789   |
| 0.7281        | 9.99  | 600  | 0.0670          | 0.9687    | 0.9705 | 0.9696 | 0.9791   |
| 0.7281        | 10.99 | 660  | 0.0658          | 0.9696    | 0.9702 | 0.9699 | 0.9792   |
| 0.7281        | 11.99 | 720  | 0.0670          | 0.9684    | 0.9715 | 0.9700 | 0.9793   |
| 0.7281        | 12.99 | 780  | 0.0672          | 0.9689    | 0.9711 | 0.9700 | 0.9792   |
| 0.7281        | 13.99 | 840  | 0.0678          | 0.9698    | 0.9708 | 0.9703 | 0.9796   |
| 0.7281        | 14.99 | 900  | 0.0681          | 0.9696    | 0.9714 | 0.9705 | 0.9796   |
| 0.7281        | 15.99 | 960  | 0.0706          | 0.9696    | 0.9711 | 0.9703 | 0.9795   |
| 0.0484        | 16.99 | 1020 | 0.0725          | 0.9694    | 0.9705 | 0.9699 | 0.9793   |
| 0.0484        | 17.99 | 1080 | 0.0735          | 0.9689    | 0.9705 | 0.9697 | 0.9791   |
| 0.0484        | 18.99 | 1140 | 0.0745          | 0.9690    | 0.9705 | 0.9698 | 0.9792   |
| 0.0484        | 19.99 | 1200 | 0.0769          | 0.9690    | 0.9706 | 0.9698 | 0.9791   |
| 0.0484        | 20.99 | 1260 | 0.0797          | 0.9691    | 0.9703 | 0.9697 | 0.9791   |
| 0.0484        | 21.99 | 1320 | 0.0808          | 0.9689    | 0.9705 | 0.9697 | 0.9791   |
| 0.0484        | 22.99 | 1380 | 0.0838          | 0.9691    | 0.9702 | 0.9697 | 0.9791   |
| 0.0484        | 23.99 | 1440 | 0.0861          | 0.9685    | 0.9704 | 0.9695 | 0.9789   |
| 0.0289        | 24.99 | 1500 | 0.0879          | 0.9684    | 0.9698 | 0.9691 | 0.9787   |
| 0.0289        | 25.99 | 1560 | 0.0887          | 0.9684    | 0.9703 | 0.9694 | 0.9789   |
| 0.0289        | 26.99 | 1620 | 0.0910          | 0.9684    | 0.9698 | 0.9691 | 0.9787   |
| 0.0289        | 27.99 | 1680 | 0.0924          | 0.9684    | 0.9697 | 0.9691 | 0.9787   |
| 0.0289        | 28.99 | 1740 | 0.0950          | 0.9693    | 0.9692 | 0.9693 | 0.9788   |
| 0.0289        | 29.99 | 1800 | 0.0962          | 0.9692    | 0.9697 | 0.9694 | 0.9789   |
| 0.0289        | 30.99 | 1860 | 0.0977          | 0.9687    | 0.9699 | 0.9693 | 0.9787   |
| 0.0289        | 31.99 | 1920 | 0.0979          | 0.9688    | 0.9699 | 0.9694 | 0.9788   |
| 0.0289        | 32.99 | 1980 | 0.1000          | 0.9687    | 0.9698 | 0.9692 | 0.9788   |
| 0.018         | 33.99 | 2040 | 0.1021          | 0.9688    | 0.9698 | 0.9693 | 0.9788   |
| 0.018         | 34.99 | 2100 | 0.1037          | 0.9687    | 0.9701 | 0.9694 | 0.9788   |
| 0.018         | 35.99 | 2160 | 0.1035          | 0.9688    | 0.9703 | 0.9696 | 0.9790   |
| 0.018         | 36.99 | 2220 | 0.1042          | 0.9688    | 0.9700 | 0.9694 | 0.9789   |
| 0.018         | 37.99 | 2280 | 0.1053          | 0.9685    | 0.9699 | 0.9692 | 0.9787   |
| 0.018         | 38.99 | 2340 | 0.1052          | 0.9689    | 0.9700 | 0.9695 | 0.9789   |
| 0.018         | 39.99 | 2400 | 0.1054          | 0.9688    | 0.9700 | 0.9694 | 0.9788   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.12.0
- Datasets 2.18.0
- Tokenizers 0.13.2