pranaydeeps
commited on
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +108 -0
- all_results.json +17 -0
- config.json +145 -0
- eval_results.json +12 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +21 -0
- train_results.json +8 -0
- trainer_state.json +529 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: pos_final_xlm_en
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# pos_final_xlm_en
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0719
|
23 |
+
- Precision: 0.9686
|
24 |
+
- Recall: 0.9705
|
25 |
+
- F1: 0.9695
|
26 |
+
- Accuracy: 0.9790
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 256
|
47 |
+
- eval_batch_size: 256
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 1024
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 500
|
54 |
+
- num_epochs: 40.0
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| No log | 0.99 | 60 | 3.0062 | 0.2412 | 0.1720 | 0.2008 | 0.3036 |
|
62 |
+
| No log | 1.99 | 120 | 0.5353 | 0.8699 | 0.8553 | 0.8625 | 0.8970 |
|
63 |
+
| No log | 2.99 | 180 | 0.1312 | 0.9578 | 0.9553 | 0.9566 | 0.9691 |
|
64 |
+
| No log | 3.99 | 240 | 0.0981 | 0.9621 | 0.9628 | 0.9625 | 0.9737 |
|
65 |
+
| No log | 4.99 | 300 | 0.0853 | 0.9652 | 0.9659 | 0.9655 | 0.9760 |
|
66 |
+
| No log | 5.99 | 360 | 0.0788 | 0.9656 | 0.9676 | 0.9666 | 0.9769 |
|
67 |
+
| No log | 6.99 | 420 | 0.0745 | 0.9664 | 0.9689 | 0.9677 | 0.9775 |
|
68 |
+
| No log | 7.99 | 480 | 0.0718 | 0.9675 | 0.9689 | 0.9682 | 0.9780 |
|
69 |
+
| 0.7956 | 8.99 | 540 | 0.0707 | 0.9679 | 0.9683 | 0.9681 | 0.9779 |
|
70 |
+
| 0.7956 | 9.99 | 600 | 0.0686 | 0.9682 | 0.9698 | 0.9690 | 0.9786 |
|
71 |
+
| 0.7956 | 10.99 | 660 | 0.0686 | 0.9689 | 0.9694 | 0.9692 | 0.9787 |
|
72 |
+
| 0.7956 | 11.99 | 720 | 0.0680 | 0.9679 | 0.9707 | 0.9693 | 0.9787 |
|
73 |
+
| 0.7956 | 12.99 | 780 | 0.0685 | 0.9683 | 0.9706 | 0.9694 | 0.9789 |
|
74 |
+
| 0.7956 | 13.99 | 840 | 0.0695 | 0.9689 | 0.9700 | 0.9694 | 0.9788 |
|
75 |
+
| 0.7956 | 14.99 | 900 | 0.0703 | 0.9682 | 0.9699 | 0.9690 | 0.9786 |
|
76 |
+
| 0.7956 | 15.99 | 960 | 0.0719 | 0.9686 | 0.9705 | 0.9695 | 0.9790 |
|
77 |
+
| 0.051 | 16.99 | 1020 | 0.0735 | 0.9687 | 0.9701 | 0.9694 | 0.9788 |
|
78 |
+
| 0.051 | 17.99 | 1080 | 0.0747 | 0.9684 | 0.9701 | 0.9692 | 0.9787 |
|
79 |
+
| 0.051 | 18.99 | 1140 | 0.0761 | 0.9685 | 0.9697 | 0.9691 | 0.9786 |
|
80 |
+
| 0.051 | 19.99 | 1200 | 0.0774 | 0.9678 | 0.9698 | 0.9688 | 0.9784 |
|
81 |
+
| 0.051 | 20.99 | 1260 | 0.0796 | 0.9685 | 0.9694 | 0.9690 | 0.9785 |
|
82 |
+
| 0.051 | 21.99 | 1320 | 0.0796 | 0.9681 | 0.9701 | 0.9691 | 0.9786 |
|
83 |
+
| 0.051 | 22.99 | 1380 | 0.0820 | 0.9684 | 0.9690 | 0.9687 | 0.9784 |
|
84 |
+
| 0.051 | 23.99 | 1440 | 0.0829 | 0.9679 | 0.9688 | 0.9683 | 0.9781 |
|
85 |
+
| 0.0318 | 24.99 | 1500 | 0.0854 | 0.9681 | 0.9690 | 0.9686 | 0.9782 |
|
86 |
+
| 0.0318 | 25.99 | 1560 | 0.0881 | 0.9677 | 0.9692 | 0.9684 | 0.9782 |
|
87 |
+
| 0.0318 | 26.99 | 1620 | 0.0893 | 0.9679 | 0.9690 | 0.9685 | 0.9783 |
|
88 |
+
| 0.0318 | 27.99 | 1680 | 0.0910 | 0.9676 | 0.9691 | 0.9683 | 0.9781 |
|
89 |
+
| 0.0318 | 28.99 | 1740 | 0.0919 | 0.9684 | 0.9686 | 0.9685 | 0.9783 |
|
90 |
+
| 0.0318 | 29.99 | 1800 | 0.0933 | 0.9678 | 0.9686 | 0.9682 | 0.9781 |
|
91 |
+
| 0.0318 | 30.99 | 1860 | 0.0947 | 0.9677 | 0.9688 | 0.9683 | 0.9781 |
|
92 |
+
| 0.0318 | 31.99 | 1920 | 0.0966 | 0.9678 | 0.9694 | 0.9686 | 0.9783 |
|
93 |
+
| 0.0318 | 32.99 | 1980 | 0.0974 | 0.9677 | 0.9689 | 0.9683 | 0.9781 |
|
94 |
+
| 0.0211 | 33.99 | 2040 | 0.0981 | 0.9684 | 0.9693 | 0.9688 | 0.9784 |
|
95 |
+
| 0.0211 | 34.99 | 2100 | 0.0989 | 0.9681 | 0.9690 | 0.9686 | 0.9783 |
|
96 |
+
| 0.0211 | 35.99 | 2160 | 0.1008 | 0.9679 | 0.9695 | 0.9687 | 0.9784 |
|
97 |
+
| 0.0211 | 36.99 | 2220 | 0.1015 | 0.9681 | 0.9689 | 0.9685 | 0.9782 |
|
98 |
+
| 0.0211 | 37.99 | 2280 | 0.1015 | 0.9677 | 0.9689 | 0.9683 | 0.9781 |
|
99 |
+
| 0.0211 | 38.99 | 2340 | 0.1024 | 0.9679 | 0.9690 | 0.9684 | 0.9782 |
|
100 |
+
| 0.0211 | 39.99 | 2400 | 0.1022 | 0.9680 | 0.9690 | 0.9685 | 0.9782 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.25.1
|
106 |
+
- Pytorch 1.12.0
|
107 |
+
- Datasets 2.18.0
|
108 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.99,
|
3 |
+
"eval_accuracy": 0.9790089140228122,
|
4 |
+
"eval_f1": 0.9695497407877142,
|
5 |
+
"eval_loss": 0.07188576459884644,
|
6 |
+
"eval_precision": 0.9686181737446121,
|
7 |
+
"eval_recall": 0.97048310142215,
|
8 |
+
"eval_runtime": 9.3965,
|
9 |
+
"eval_samples": 2072,
|
10 |
+
"eval_samples_per_second": 735.381,
|
11 |
+
"eval_steps_per_second": 2.873,
|
12 |
+
"train_loss": 0.19011780440807344,
|
13 |
+
"train_runtime": 1964.637,
|
14 |
+
"train_samples": 62189,
|
15 |
+
"train_samples_per_second": 1266.168,
|
16 |
+
"train_steps_per_second": 1.222
|
17 |
+
}
|
config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"finetuning_task": "pos",
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "`",
|
16 |
+
"1": "\tSYM",
|
17 |
+
"2": "IN",
|
18 |
+
"3": "$",
|
19 |
+
"4": "WDT",
|
20 |
+
"5": "LS",
|
21 |
+
"6": "\tDT",
|
22 |
+
"7": "VBZ",
|
23 |
+
"8": "CD",
|
24 |
+
"9": "SYM",
|
25 |
+
"10": "UH",
|
26 |
+
"11": "VB",
|
27 |
+
"12": "``",
|
28 |
+
"13": "VBN",
|
29 |
+
"14": "NN",
|
30 |
+
"15": "sleepy\t#",
|
31 |
+
"16": "terrorist\t#",
|
32 |
+
"17": "TO",
|
33 |
+
"18": "POS",
|
34 |
+
"19": "it",
|
35 |
+
"20": "NNP",
|
36 |
+
"21": "(",
|
37 |
+
"22": ".",
|
38 |
+
"23": "CC",
|
39 |
+
"24": ":",
|
40 |
+
"25": "RBR",
|
41 |
+
"26": "''",
|
42 |
+
"27": "#",
|
43 |
+
"28": "FW",
|
44 |
+
"29": "MD",
|
45 |
+
"30": "DT",
|
46 |
+
"31": "WP$",
|
47 |
+
"32": ",",
|
48 |
+
"33": "RBS",
|
49 |
+
"34": ")",
|
50 |
+
"35": "RB",
|
51 |
+
"36": "WP",
|
52 |
+
"37": "WRB",
|
53 |
+
"38": "@",
|
54 |
+
"39": "NNS",
|
55 |
+
"40": "PRP$",
|
56 |
+
"41": "JJS",
|
57 |
+
"42": "Ready\t#",
|
58 |
+
"43": "EX",
|
59 |
+
"44": "U",
|
60 |
+
"45": "NNPS",
|
61 |
+
"46": "\tPRP",
|
62 |
+
"47": "hero\t#",
|
63 |
+
"48": "JJR",
|
64 |
+
"49": "JJ",
|
65 |
+
"50": "PRP",
|
66 |
+
"51": "PDT",
|
67 |
+
"52": "VBD",
|
68 |
+
"53": "RP",
|
69 |
+
"54": "VBP",
|
70 |
+
"55": "VBG"
|
71 |
+
},
|
72 |
+
"initializer_range": 0.02,
|
73 |
+
"intermediate_size": 3072,
|
74 |
+
"label2id": {
|
75 |
+
"\tDT": 6,
|
76 |
+
"\tPRP": 46,
|
77 |
+
"\tSYM": 1,
|
78 |
+
"#": 27,
|
79 |
+
"$": 3,
|
80 |
+
"''": 26,
|
81 |
+
"(": 21,
|
82 |
+
")": 34,
|
83 |
+
",": 32,
|
84 |
+
".": 22,
|
85 |
+
":": 24,
|
86 |
+
"@": 38,
|
87 |
+
"CC": 23,
|
88 |
+
"CD": 8,
|
89 |
+
"DT": 30,
|
90 |
+
"EX": 43,
|
91 |
+
"FW": 28,
|
92 |
+
"IN": 2,
|
93 |
+
"JJ": 49,
|
94 |
+
"JJR": 48,
|
95 |
+
"JJS": 41,
|
96 |
+
"LS": 5,
|
97 |
+
"MD": 29,
|
98 |
+
"NN": 14,
|
99 |
+
"NNP": 20,
|
100 |
+
"NNPS": 45,
|
101 |
+
"NNS": 39,
|
102 |
+
"PDT": 51,
|
103 |
+
"POS": 18,
|
104 |
+
"PRP": 50,
|
105 |
+
"PRP$": 40,
|
106 |
+
"RB": 35,
|
107 |
+
"RBR": 25,
|
108 |
+
"RBS": 33,
|
109 |
+
"RP": 53,
|
110 |
+
"Ready\t#": 42,
|
111 |
+
"SYM": 9,
|
112 |
+
"TO": 17,
|
113 |
+
"U": 44,
|
114 |
+
"UH": 10,
|
115 |
+
"VB": 11,
|
116 |
+
"VBD": 52,
|
117 |
+
"VBG": 55,
|
118 |
+
"VBN": 13,
|
119 |
+
"VBP": 54,
|
120 |
+
"VBZ": 7,
|
121 |
+
"WDT": 4,
|
122 |
+
"WP": 36,
|
123 |
+
"WP$": 31,
|
124 |
+
"WRB": 37,
|
125 |
+
"`": 0,
|
126 |
+
"``": 12,
|
127 |
+
"hero\t#": 47,
|
128 |
+
"it": 19,
|
129 |
+
"sleepy\t#": 15,
|
130 |
+
"terrorist\t#": 16
|
131 |
+
},
|
132 |
+
"layer_norm_eps": 1e-05,
|
133 |
+
"max_position_embeddings": 514,
|
134 |
+
"model_type": "xlm-roberta",
|
135 |
+
"num_attention_heads": 12,
|
136 |
+
"num_hidden_layers": 12,
|
137 |
+
"output_past": true,
|
138 |
+
"pad_token_id": 1,
|
139 |
+
"position_embedding_type": "absolute",
|
140 |
+
"torch_dtype": "float32",
|
141 |
+
"transformers_version": "4.25.1",
|
142 |
+
"type_vocab_size": 1,
|
143 |
+
"use_cache": true,
|
144 |
+
"vocab_size": 250002
|
145 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.99,
|
3 |
+
"eval_accuracy": 0.9790089140228122,
|
4 |
+
"eval_f1": 0.9695497407877142,
|
5 |
+
"eval_loss": 0.07188576459884644,
|
6 |
+
"eval_precision": 0.9686181737446121,
|
7 |
+
"eval_recall": 0.97048310142215,
|
8 |
+
"eval_runtime": 9.3965,
|
9 |
+
"eval_samples": 2072,
|
10 |
+
"eval_samples_per_second": 735.381,
|
11 |
+
"eval_steps_per_second": 2.873
|
12 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60d6d87ae3bbd38bd10f9e4dd805847032e26dc05af8f15e035615ee175b3a47
|
3 |
+
size 1110055537
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2c509a525eb51aebb33fb59c24ee923c1d4c1db23c3ae81fe05ccf354084f7b
|
3 |
+
size 17082758
|
tokenizer_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"__type": "AddedToken",
|
7 |
+
"content": "<mask>",
|
8 |
+
"lstrip": true,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"model_max_length": 512,
|
14 |
+
"name_or_path": "xlm-roberta-base",
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"special_tokens_map_file": null,
|
18 |
+
"token": null,
|
19 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
20 |
+
"unk_token": "<unk>"
|
21 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.99,
|
3 |
+
"train_loss": 0.19011780440807344,
|
4 |
+
"train_runtime": 1964.637,
|
5 |
+
"train_samples": 62189,
|
6 |
+
"train_samples_per_second": 1266.168,
|
7 |
+
"train_steps_per_second": 1.222
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9695497407877142,
|
3 |
+
"best_model_checkpoint": "models/pos_final_xlm_en/checkpoint-960",
|
4 |
+
"epoch": 39.98765432098765,
|
5 |
+
"global_step": 2400,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.99,
|
12 |
+
"eval_accuracy": 0.3035943640371897,
|
13 |
+
"eval_f1": 0.2008264425810438,
|
14 |
+
"eval_loss": 3.0061752796173096,
|
15 |
+
"eval_precision": 0.24116944979086247,
|
16 |
+
"eval_recall": 0.17204639246429285,
|
17 |
+
"eval_runtime": 8.5419,
|
18 |
+
"eval_samples_per_second": 808.95,
|
19 |
+
"eval_steps_per_second": 3.161,
|
20 |
+
"step": 60
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.99,
|
24 |
+
"eval_accuracy": 0.8970254640723346,
|
25 |
+
"eval_f1": 0.8625090892213438,
|
26 |
+
"eval_loss": 0.5353450775146484,
|
27 |
+
"eval_precision": 0.8698569221887629,
|
28 |
+
"eval_recall": 0.8552843532822976,
|
29 |
+
"eval_runtime": 8.8286,
|
30 |
+
"eval_samples_per_second": 782.684,
|
31 |
+
"eval_steps_per_second": 3.058,
|
32 |
+
"step": 120
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 2.99,
|
36 |
+
"eval_accuracy": 0.9690916642704239,
|
37 |
+
"eval_f1": 0.9565594734295436,
|
38 |
+
"eval_loss": 0.13116228580474854,
|
39 |
+
"eval_precision": 0.9577732320280538,
|
40 |
+
"eval_recall": 0.955348787260482,
|
41 |
+
"eval_runtime": 8.7122,
|
42 |
+
"eval_samples_per_second": 793.137,
|
43 |
+
"eval_steps_per_second": 3.099,
|
44 |
+
"step": 180
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 3.99,
|
48 |
+
"eval_accuracy": 0.9736924502380268,
|
49 |
+
"eval_f1": 0.9624591697465074,
|
50 |
+
"eval_loss": 0.09810493141412735,
|
51 |
+
"eval_precision": 0.9620755729286427,
|
52 |
+
"eval_recall": 0.962843072580274,
|
53 |
+
"eval_runtime": 8.7346,
|
54 |
+
"eval_samples_per_second": 791.107,
|
55 |
+
"eval_steps_per_second": 3.091,
|
56 |
+
"step": 240
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 4.99,
|
60 |
+
"eval_accuracy": 0.976024793124381,
|
61 |
+
"eval_f1": 0.9655468564286207,
|
62 |
+
"eval_loss": 0.08534899353981018,
|
63 |
+
"eval_precision": 0.9652285898261429,
|
64 |
+
"eval_recall": 0.9658653329855944,
|
65 |
+
"eval_runtime": 9.6188,
|
66 |
+
"eval_samples_per_second": 718.383,
|
67 |
+
"eval_steps_per_second": 2.807,
|
68 |
+
"step": 300
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 5.99,
|
72 |
+
"eval_accuracy": 0.9768554905907537,
|
73 |
+
"eval_f1": 0.9665754810234248,
|
74 |
+
"eval_loss": 0.07884209603071213,
|
75 |
+
"eval_precision": 0.9655618493570116,
|
76 |
+
"eval_recall": 0.9675912431155362,
|
77 |
+
"eval_runtime": 8.6507,
|
78 |
+
"eval_samples_per_second": 798.781,
|
79 |
+
"eval_steps_per_second": 3.121,
|
80 |
+
"step": 360
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 6.99,
|
84 |
+
"eval_accuracy": 0.9775456084858941,
|
85 |
+
"eval_f1": 0.9676831206836455,
|
86 |
+
"eval_loss": 0.0745365098118782,
|
87 |
+
"eval_precision": 0.9664282162120806,
|
88 |
+
"eval_recall": 0.9689412883727352,
|
89 |
+
"eval_runtime": 8.6592,
|
90 |
+
"eval_samples_per_second": 797.994,
|
91 |
+
"eval_steps_per_second": 3.118,
|
92 |
+
"step": 420
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 7.99,
|
96 |
+
"eval_accuracy": 0.9780376369852072,
|
97 |
+
"eval_f1": 0.9681889956921002,
|
98 |
+
"eval_loss": 0.07183900475502014,
|
99 |
+
"eval_precision": 0.9675067024128686,
|
100 |
+
"eval_recall": 0.9688722519675376,
|
101 |
+
"eval_runtime": 8.714,
|
102 |
+
"eval_samples_per_second": 792.979,
|
103 |
+
"eval_steps_per_second": 3.098,
|
104 |
+
"step": 480
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 8.33,
|
108 |
+
"learning_rate": 4.99e-05,
|
109 |
+
"loss": 0.7956,
|
110 |
+
"step": 500
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 8.99,
|
114 |
+
"eval_accuracy": 0.9779226173360172,
|
115 |
+
"eval_f1": 0.9680838417498475,
|
116 |
+
"eval_loss": 0.07068216055631638,
|
117 |
+
"eval_precision": 0.9679168168329358,
|
118 |
+
"eval_recall": 0.9682509243207584,
|
119 |
+
"eval_runtime": 8.6148,
|
120 |
+
"eval_samples_per_second": 802.109,
|
121 |
+
"eval_steps_per_second": 3.134,
|
122 |
+
"step": 540
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 9.99,
|
126 |
+
"eval_accuracy": 0.9785999552701364,
|
127 |
+
"eval_f1": 0.9690196980148693,
|
128 |
+
"eval_loss": 0.06864651292562485,
|
129 |
+
"eval_precision": 0.9682478900853156,
|
130 |
+
"eval_recall": 0.9697927373701732,
|
131 |
+
"eval_runtime": 9.3629,
|
132 |
+
"eval_samples_per_second": 738.021,
|
133 |
+
"eval_steps_per_second": 2.884,
|
134 |
+
"step": 600
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 10.99,
|
138 |
+
"eval_accuracy": 0.9786830250167737,
|
139 |
+
"eval_f1": 0.9691608673146603,
|
140 |
+
"eval_loss": 0.06855177879333496,
|
141 |
+
"eval_precision": 0.9688896725672537,
|
142 |
+
"eval_recall": 0.9694322139208076,
|
143 |
+
"eval_runtime": 9.7452,
|
144 |
+
"eval_samples_per_second": 709.065,
|
145 |
+
"eval_steps_per_second": 2.771,
|
146 |
+
"step": 660
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 11.99,
|
150 |
+
"eval_accuracy": 0.9787149749193265,
|
151 |
+
"eval_f1": 0.9692986487728651,
|
152 |
+
"eval_loss": 0.06800223141908646,
|
153 |
+
"eval_precision": 0.9679492082918993,
|
154 |
+
"eval_recall": 0.9706518570792998,
|
155 |
+
"eval_runtime": 8.6538,
|
156 |
+
"eval_samples_per_second": 798.493,
|
157 |
+
"eval_steps_per_second": 3.12,
|
158 |
+
"step": 720
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 12.99,
|
162 |
+
"eval_accuracy": 0.97886833445158,
|
163 |
+
"eval_f1": 0.9694478391289856,
|
164 |
+
"eval_loss": 0.06851476430892944,
|
165 |
+
"eval_precision": 0.968346050526928,
|
166 |
+
"eval_recall": 0.9705521378273476,
|
167 |
+
"eval_runtime": 8.6111,
|
168 |
+
"eval_samples_per_second": 802.455,
|
169 |
+
"eval_steps_per_second": 3.135,
|
170 |
+
"step": 780
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 13.99,
|
174 |
+
"eval_accuracy": 0.9788299945685166,
|
175 |
+
"eval_f1": 0.9694149394930217,
|
176 |
+
"eval_loss": 0.06948242336511612,
|
177 |
+
"eval_precision": 0.9688690015554006,
|
178 |
+
"eval_recall": 0.969961493027323,
|
179 |
+
"eval_runtime": 8.5894,
|
180 |
+
"eval_samples_per_second": 804.476,
|
181 |
+
"eval_steps_per_second": 3.143,
|
182 |
+
"step": 840
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 14.99,
|
186 |
+
"eval_accuracy": 0.9786382951531998,
|
187 |
+
"eval_f1": 0.9690144083384428,
|
188 |
+
"eval_loss": 0.07028312981128693,
|
189 |
+
"eval_precision": 0.9681685222904575,
|
190 |
+
"eval_recall": 0.9698617737753709,
|
191 |
+
"eval_runtime": 8.8189,
|
192 |
+
"eval_samples_per_second": 783.547,
|
193 |
+
"eval_steps_per_second": 3.062,
|
194 |
+
"step": 900
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 15.99,
|
198 |
+
"eval_accuracy": 0.9790089140228122,
|
199 |
+
"eval_f1": 0.9695497407877142,
|
200 |
+
"eval_loss": 0.07188576459884644,
|
201 |
+
"eval_precision": 0.9686181737446121,
|
202 |
+
"eval_recall": 0.97048310142215,
|
203 |
+
"eval_runtime": 8.5817,
|
204 |
+
"eval_samples_per_second": 805.199,
|
205 |
+
"eval_steps_per_second": 3.146,
|
206 |
+
"step": 960
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 16.66,
|
210 |
+
"learning_rate": 3.686842105263158e-05,
|
211 |
+
"loss": 0.051,
|
212 |
+
"step": 1000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 16.99,
|
216 |
+
"eval_accuracy": 0.978823604588006,
|
217 |
+
"eval_f1": 0.9694240468488908,
|
218 |
+
"eval_loss": 0.07346100360155106,
|
219 |
+
"eval_precision": 0.9687112241302716,
|
220 |
+
"eval_recall": 0.9701379193961616,
|
221 |
+
"eval_runtime": 9.6099,
|
222 |
+
"eval_samples_per_second": 719.048,
|
223 |
+
"eval_steps_per_second": 2.81,
|
224 |
+
"step": 1020
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 17.99,
|
228 |
+
"eval_accuracy": 0.9786830250167737,
|
229 |
+
"eval_f1": 0.9692255223920633,
|
230 |
+
"eval_loss": 0.07468883693218231,
|
231 |
+
"eval_precision": 0.9683683392420959,
|
232 |
+
"eval_recall": 0.9700842244143412,
|
233 |
+
"eval_runtime": 8.7732,
|
234 |
+
"eval_samples_per_second": 787.628,
|
235 |
+
"eval_steps_per_second": 3.078,
|
236 |
+
"step": 1080
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 18.99,
|
240 |
+
"eval_accuracy": 0.9785743953480942,
|
241 |
+
"eval_f1": 0.9691213222329547,
|
242 |
+
"eval_loss": 0.07609081268310547,
|
243 |
+
"eval_precision": 0.9685273432113142,
|
244 |
+
"eval_recall": 0.9697160302532869,
|
245 |
+
"eval_runtime": 8.6582,
|
246 |
+
"eval_samples_per_second": 798.088,
|
247 |
+
"eval_steps_per_second": 3.118,
|
248 |
+
"step": 1140
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 19.99,
|
252 |
+
"eval_accuracy": 0.9784210358158407,
|
253 |
+
"eval_f1": 0.9688278250741372,
|
254 |
+
"eval_loss": 0.07741989195346832,
|
255 |
+
"eval_precision": 0.9678266327811629,
|
256 |
+
"eval_recall": 0.9698310909286163,
|
257 |
+
"eval_runtime": 8.7584,
|
258 |
+
"eval_samples_per_second": 788.959,
|
259 |
+
"eval_steps_per_second": 3.083,
|
260 |
+
"step": 1200
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 20.99,
|
264 |
+
"eval_accuracy": 0.9784977155819675,
|
265 |
+
"eval_f1": 0.9689622916379138,
|
266 |
+
"eval_loss": 0.0795513391494751,
|
267 |
+
"eval_precision": 0.9685464216189702,
|
268 |
+
"eval_recall": 0.9693785189389872,
|
269 |
+
"eval_runtime": 8.6744,
|
270 |
+
"eval_samples_per_second": 796.596,
|
271 |
+
"eval_steps_per_second": 3.113,
|
272 |
+
"step": 1260
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 21.99,
|
276 |
+
"eval_accuracy": 0.9785999552701364,
|
277 |
+
"eval_f1": 0.9690767468323875,
|
278 |
+
"eval_loss": 0.07958221435546875,
|
279 |
+
"eval_precision": 0.9680789987369388,
|
280 |
+
"eval_recall": 0.9700765537026526,
|
281 |
+
"eval_runtime": 8.6133,
|
282 |
+
"eval_samples_per_second": 802.246,
|
283 |
+
"eval_steps_per_second": 3.135,
|
284 |
+
"step": 1320
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 22.99,
|
288 |
+
"eval_accuracy": 0.9783954758937985,
|
289 |
+
"eval_f1": 0.9686965590754671,
|
290 |
+
"eval_loss": 0.08197388052940369,
|
291 |
+
"eval_precision": 0.968436627924806,
|
292 |
+
"eval_recall": 0.9689566297961125,
|
293 |
+
"eval_runtime": 8.7277,
|
294 |
+
"eval_samples_per_second": 791.73,
|
295 |
+
"eval_steps_per_second": 3.094,
|
296 |
+
"step": 1380
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 23.99,
|
300 |
+
"eval_accuracy": 0.978127096712355,
|
301 |
+
"eval_f1": 0.9683426871530653,
|
302 |
+
"eval_loss": 0.08289676904678345,
|
303 |
+
"eval_precision": 0.9678825963675377,
|
304 |
+
"eval_recall": 0.9688032155623398,
|
305 |
+
"eval_runtime": 8.6527,
|
306 |
+
"eval_samples_per_second": 798.592,
|
307 |
+
"eval_steps_per_second": 3.12,
|
308 |
+
"step": 1440
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 24.99,
|
312 |
+
"learning_rate": 2.3710526315789475e-05,
|
313 |
+
"loss": 0.0318,
|
314 |
+
"step": 1500
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 24.99,
|
318 |
+
"eval_accuracy": 0.9782101664589923,
|
319 |
+
"eval_f1": 0.9685605958957412,
|
320 |
+
"eval_loss": 0.08542540669441223,
|
321 |
+
"eval_precision": 0.96811894087443,
|
322 |
+
"eval_recall": 0.9690026540662443,
|
323 |
+
"eval_runtime": 8.7516,
|
324 |
+
"eval_samples_per_second": 789.565,
|
325 |
+
"eval_steps_per_second": 3.085,
|
326 |
+
"step": 1500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 25.99,
|
330 |
+
"eval_accuracy": 0.9781526566343972,
|
331 |
+
"eval_f1": 0.9684325094947744,
|
332 |
+
"eval_loss": 0.08812534809112549,
|
333 |
+
"eval_precision": 0.9676870878552774,
|
334 |
+
"eval_recall": 0.9691790804350827,
|
335 |
+
"eval_runtime": 9.0034,
|
336 |
+
"eval_samples_per_second": 767.488,
|
337 |
+
"eval_steps_per_second": 2.999,
|
338 |
+
"step": 1560
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 26.99,
|
342 |
+
"eval_accuracy": 0.9782548963225662,
|
343 |
+
"eval_f1": 0.9684803649117427,
|
344 |
+
"eval_loss": 0.08933103829622269,
|
345 |
+
"eval_precision": 0.9679127176886124,
|
346 |
+
"eval_recall": 0.9690486783363761,
|
347 |
+
"eval_runtime": 8.7744,
|
348 |
+
"eval_samples_per_second": 787.518,
|
349 |
+
"eval_steps_per_second": 3.077,
|
350 |
+
"step": 1620
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 27.99,
|
354 |
+
"eval_accuracy": 0.9780951468098023,
|
355 |
+
"eval_f1": 0.9683360927152317,
|
356 |
+
"eval_loss": 0.090970478951931,
|
357 |
+
"eval_precision": 0.9676092584366048,
|
358 |
+
"eval_recall": 0.9690640197597533,
|
359 |
+
"eval_runtime": 8.5971,
|
360 |
+
"eval_samples_per_second": 803.763,
|
361 |
+
"eval_steps_per_second": 3.141,
|
362 |
+
"step": 1680
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 28.99,
|
366 |
+
"eval_accuracy": 0.9782612863030767,
|
367 |
+
"eval_f1": 0.9684535086171853,
|
368 |
+
"eval_loss": 0.09189366549253464,
|
369 |
+
"eval_precision": 0.9683569544143813,
|
370 |
+
"eval_recall": 0.9685500820766151,
|
371 |
+
"eval_runtime": 8.7669,
|
372 |
+
"eval_samples_per_second": 788.195,
|
373 |
+
"eval_steps_per_second": 3.08,
|
374 |
+
"step": 1740
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 29.99,
|
378 |
+
"eval_accuracy": 0.9780759768682705,
|
379 |
+
"eval_f1": 0.9681861749031936,
|
380 |
+
"eval_loss": 0.09329535067081451,
|
381 |
+
"eval_precision": 0.9678225410841305,
|
382 |
+
"eval_recall": 0.9685500820766151,
|
383 |
+
"eval_runtime": 8.9984,
|
384 |
+
"eval_samples_per_second": 767.912,
|
385 |
+
"eval_steps_per_second": 3.001,
|
386 |
+
"step": 1800
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 30.99,
|
390 |
+
"eval_accuracy": 0.9780887568292916,
|
391 |
+
"eval_f1": 0.968276115855809,
|
392 |
+
"eval_loss": 0.0947079062461853,
|
393 |
+
"eval_precision": 0.967741935483871,
|
394 |
+
"eval_recall": 0.9688108862740286,
|
395 |
+
"eval_runtime": 9.134,
|
396 |
+
"eval_samples_per_second": 756.516,
|
397 |
+
"eval_steps_per_second": 2.956,
|
398 |
+
"step": 1860
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 31.99,
|
402 |
+
"eval_accuracy": 0.9782804562446085,
|
403 |
+
"eval_f1": 0.9685832975657613,
|
404 |
+
"eval_loss": 0.09658045321702957,
|
405 |
+
"eval_precision": 0.9677970255326318,
|
406 |
+
"eval_recall": 0.9693708482272986,
|
407 |
+
"eval_runtime": 8.9466,
|
408 |
+
"eval_samples_per_second": 772.361,
|
409 |
+
"eval_steps_per_second": 3.018,
|
410 |
+
"step": 1920
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 32.99,
|
414 |
+
"eval_accuracy": 0.9780951468098023,
|
415 |
+
"eval_f1": 0.9683005734261446,
|
416 |
+
"eval_loss": 0.09742453694343567,
|
417 |
+
"eval_precision": 0.967721916611759,
|
418 |
+
"eval_recall": 0.9688799226792262,
|
419 |
+
"eval_runtime": 9.0098,
|
420 |
+
"eval_samples_per_second": 766.942,
|
421 |
+
"eval_steps_per_second": 2.997,
|
422 |
+
"step": 1980
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 33.33,
|
426 |
+
"learning_rate": 1.055263157894737e-05,
|
427 |
+
"loss": 0.0211,
|
428 |
+
"step": 2000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 33.99,
|
432 |
+
"eval_accuracy": 0.9784274257963513,
|
433 |
+
"eval_f1": 0.9688261902936441,
|
434 |
+
"eval_loss": 0.09810397773981094,
|
435 |
+
"eval_precision": 0.968351035296642,
|
436 |
+
"eval_recall": 0.9693018118221008,
|
437 |
+
"eval_runtime": 8.8808,
|
438 |
+
"eval_samples_per_second": 778.087,
|
439 |
+
"eval_steps_per_second": 3.04,
|
440 |
+
"step": 2040
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 34.99,
|
444 |
+
"eval_accuracy": 0.978286846225119,
|
445 |
+
"eval_f1": 0.9685722171959579,
|
446 |
+
"eval_loss": 0.09894430637359619,
|
447 |
+
"eval_precision": 0.9681268488573487,
|
448 |
+
"eval_recall": 0.9690179954896215,
|
449 |
+
"eval_runtime": 9.0496,
|
450 |
+
"eval_samples_per_second": 763.573,
|
451 |
+
"eval_steps_per_second": 2.984,
|
452 |
+
"step": 2100
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 35.99,
|
456 |
+
"eval_accuracy": 0.9783507460302246,
|
457 |
+
"eval_f1": 0.9687094017421564,
|
458 |
+
"eval_loss": 0.10078005492687225,
|
459 |
+
"eval_precision": 0.9679341374688876,
|
460 |
+
"eval_recall": 0.969485908902628,
|
461 |
+
"eval_runtime": 8.9188,
|
462 |
+
"eval_samples_per_second": 774.772,
|
463 |
+
"eval_steps_per_second": 3.027,
|
464 |
+
"step": 2160
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 36.99,
|
468 |
+
"eval_accuracy": 0.9782229464200134,
|
469 |
+
"eval_f1": 0.9684928880880267,
|
470 |
+
"eval_loss": 0.10152223706245422,
|
471 |
+
"eval_precision": 0.9681291390728477,
|
472 |
+
"eval_recall": 0.9688569105441602,
|
473 |
+
"eval_runtime": 8.9289,
|
474 |
+
"eval_samples_per_second": 773.895,
|
475 |
+
"eval_steps_per_second": 3.024,
|
476 |
+
"step": 2220
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 37.99,
|
480 |
+
"eval_accuracy": 0.97806958688776,
|
481 |
+
"eval_f1": 0.9682817728476643,
|
482 |
+
"eval_loss": 0.10151796787977219,
|
483 |
+
"eval_precision": 0.9676920130243248,
|
484 |
+
"eval_recall": 0.9688722519675376,
|
485 |
+
"eval_runtime": 9.2785,
|
486 |
+
"eval_samples_per_second": 744.734,
|
487 |
+
"eval_steps_per_second": 2.91,
|
488 |
+
"step": 2280
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 38.99,
|
492 |
+
"eval_accuracy": 0.9781654365954184,
|
493 |
+
"eval_f1": 0.9684071725914399,
|
494 |
+
"eval_loss": 0.10238787531852722,
|
495 |
+
"eval_precision": 0.9678506849734898,
|
496 |
+
"eval_recall": 0.9689643005078011,
|
497 |
+
"eval_runtime": 8.88,
|
498 |
+
"eval_samples_per_second": 778.153,
|
499 |
+
"eval_steps_per_second": 3.041,
|
500 |
+
"step": 2340
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 39.99,
|
504 |
+
"eval_accuracy": 0.9782165564395029,
|
505 |
+
"eval_f1": 0.9685044199615122,
|
506 |
+
"eval_loss": 0.10218308120965958,
|
507 |
+
"eval_precision": 0.9680220083374204,
|
508 |
+
"eval_recall": 0.968987312642867,
|
509 |
+
"eval_runtime": 9.7749,
|
510 |
+
"eval_samples_per_second": 706.909,
|
511 |
+
"eval_steps_per_second": 2.762,
|
512 |
+
"step": 2400
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 39.99,
|
516 |
+
"step": 2400,
|
517 |
+
"total_flos": 1.3719917000335334e+17,
|
518 |
+
"train_loss": 0.19011780440807344,
|
519 |
+
"train_runtime": 1964.637,
|
520 |
+
"train_samples_per_second": 1266.168,
|
521 |
+
"train_steps_per_second": 1.222
|
522 |
+
}
|
523 |
+
],
|
524 |
+
"max_steps": 2400,
|
525 |
+
"num_train_epochs": 40,
|
526 |
+
"total_flos": 1.3719917000335334e+17,
|
527 |
+
"trial_name": null,
|
528 |
+
"trial_params": null
|
529 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfe30f9636ac9afcec5398df38fe874cf42b23a0ee7f4e32aab9bbb6aae85244
|
3 |
+
size 3439
|