pranaydeeps
commited on
Upload folder using huggingface_hub
Browse files- README.md +108 -0
- all_results.json +17 -0
- config.json +111 -0
- eval_results.json +12 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +19 -0
- tokenizer.json +0 -0
- tokenizer_config.json +25 -0
- train_results.json +8 -0
- trainer_state.json +511 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: pos_final_mono_fr
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# pos_final_mono_fr
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5416
|
23 |
+
- Precision: 0.9742
|
24 |
+
- Recall: 0.9745
|
25 |
+
- F1: 0.9743
|
26 |
+
- Accuracy: 0.9768
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 256
|
47 |
+
- eval_batch_size: 256
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 1024
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 500
|
54 |
+
- num_epochs: 40.0
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| No log | 0.95 | 14 | 3.6697 | 0.0210 | 0.0194 | 0.0201 | 0.0215 |
|
62 |
+
| No log | 1.95 | 28 | 3.6329 | 0.0513 | 0.0484 | 0.0498 | 0.0511 |
|
63 |
+
| No log | 2.95 | 42 | 3.5739 | 0.1142 | 0.1086 | 0.1113 | 0.1267 |
|
64 |
+
| No log | 3.95 | 56 | 3.4791 | 0.2535 | 0.1976 | 0.2221 | 0.3061 |
|
65 |
+
| No log | 4.95 | 70 | 3.3377 | 0.3393 | 0.2029 | 0.2539 | 0.3788 |
|
66 |
+
| No log | 5.95 | 84 | 3.1886 | 0.3737 | 0.1401 | 0.2038 | 0.3427 |
|
67 |
+
| No log | 6.95 | 98 | 3.0505 | 0.4342 | 0.3211 | 0.3692 | 0.4600 |
|
68 |
+
| No log | 7.95 | 112 | 2.8996 | 0.5160 | 0.4319 | 0.4702 | 0.5282 |
|
69 |
+
| No log | 8.95 | 126 | 2.7485 | 0.5617 | 0.4878 | 0.5222 | 0.5732 |
|
70 |
+
| No log | 9.95 | 140 | 2.5862 | 0.6077 | 0.5374 | 0.5704 | 0.6246 |
|
71 |
+
| No log | 10.95 | 154 | 2.4205 | 0.6805 | 0.6311 | 0.6549 | 0.6887 |
|
72 |
+
| No log | 11.95 | 168 | 2.2603 | 0.7816 | 0.7569 | 0.7691 | 0.7839 |
|
73 |
+
| No log | 12.95 | 182 | 2.1124 | 0.8366 | 0.8305 | 0.8335 | 0.8370 |
|
74 |
+
| No log | 13.95 | 196 | 1.9826 | 0.8691 | 0.8681 | 0.8686 | 0.8736 |
|
75 |
+
| No log | 14.95 | 210 | 1.8721 | 0.9210 | 0.92 | 0.9205 | 0.9240 |
|
76 |
+
| No log | 15.95 | 224 | 1.7779 | 0.9390 | 0.9392 | 0.9391 | 0.9417 |
|
77 |
+
| No log | 16.95 | 238 | 1.6986 | 0.9442 | 0.9452 | 0.9447 | 0.9466 |
|
78 |
+
| No log | 17.95 | 252 | 1.6294 | 0.9467 | 0.9476 | 0.9472 | 0.9486 |
|
79 |
+
| No log | 18.95 | 266 | 1.5667 | 0.9481 | 0.9493 | 0.9487 | 0.9499 |
|
80 |
+
| No log | 19.95 | 280 | 1.5073 | 0.9507 | 0.9522 | 0.9514 | 0.9523 |
|
81 |
+
| No log | 20.95 | 294 | 1.4499 | 0.9538 | 0.9550 | 0.9544 | 0.9552 |
|
82 |
+
| No log | 21.95 | 308 | 1.3926 | 0.9555 | 0.9563 | 0.9559 | 0.9563 |
|
83 |
+
| No log | 22.95 | 322 | 1.3373 | 0.9609 | 0.9614 | 0.9612 | 0.9612 |
|
84 |
+
| No log | 23.95 | 336 | 1.2815 | 0.9622 | 0.9624 | 0.9623 | 0.9623 |
|
85 |
+
| No log | 24.95 | 350 | 1.2246 | 0.9649 | 0.9648 | 0.9648 | 0.9646 |
|
86 |
+
| No log | 25.95 | 364 | 1.1682 | 0.9653 | 0.9652 | 0.9652 | 0.9648 |
|
87 |
+
| No log | 26.95 | 378 | 1.1114 | 0.9650 | 0.9659 | 0.9654 | 0.9661 |
|
88 |
+
| No log | 27.95 | 392 | 1.0521 | 0.9669 | 0.9675 | 0.9672 | 0.9699 |
|
89 |
+
| No log | 28.95 | 406 | 0.9950 | 0.9677 | 0.9679 | 0.9678 | 0.9707 |
|
90 |
+
| No log | 29.95 | 420 | 0.9364 | 0.9687 | 0.9690 | 0.9688 | 0.9716 |
|
91 |
+
| No log | 30.95 | 434 | 0.8800 | 0.9691 | 0.9693 | 0.9692 | 0.9721 |
|
92 |
+
| No log | 31.95 | 448 | 0.8233 | 0.9693 | 0.9698 | 0.9696 | 0.9726 |
|
93 |
+
| No log | 32.95 | 462 | 0.7679 | 0.9703 | 0.9703 | 0.9703 | 0.9733 |
|
94 |
+
| No log | 33.95 | 476 | 0.7146 | 0.9711 | 0.9711 | 0.9711 | 0.9737 |
|
95 |
+
| No log | 34.95 | 490 | 0.6641 | 0.9722 | 0.9724 | 0.9723 | 0.9750 |
|
96 |
+
| 2.0937 | 35.95 | 504 | 0.6187 | 0.9729 | 0.9729 | 0.9729 | 0.9755 |
|
97 |
+
| 2.0937 | 36.95 | 518 | 0.5834 | 0.9727 | 0.9732 | 0.9729 | 0.9756 |
|
98 |
+
| 2.0937 | 37.95 | 532 | 0.5605 | 0.9735 | 0.9739 | 0.9737 | 0.9762 |
|
99 |
+
| 2.0937 | 38.95 | 546 | 0.5466 | 0.9737 | 0.9742 | 0.9739 | 0.9765 |
|
100 |
+
| 2.0937 | 39.95 | 560 | 0.5416 | 0.9742 | 0.9745 | 0.9743 | 0.9768 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.25.1
|
106 |
+
- Pytorch 1.12.0
|
107 |
+
- Datasets 2.18.0
|
108 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.95,
|
3 |
+
"eval_accuracy": 0.9768268831861554,
|
4 |
+
"eval_f1": 0.9743472495313,
|
5 |
+
"eval_loss": 0.5415592193603516,
|
6 |
+
"eval_precision": 0.974243301734386,
|
7 |
+
"eval_recall": 0.9744512195121952,
|
8 |
+
"eval_runtime": 1.948,
|
9 |
+
"eval_samples": 1431,
|
10 |
+
"eval_samples_per_second": 851.633,
|
11 |
+
"eval_steps_per_second": 3.593,
|
12 |
+
"train_loss": 1.9360494545527867,
|
13 |
+
"train_runtime": 526.0611,
|
14 |
+
"train_samples": 14928,
|
15 |
+
"train_samples_per_second": 1135.077,
|
16 |
+
"train_steps_per_second": 1.065
|
17 |
+
}
|
config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "almanach/camembert-base",
|
3 |
+
"architectures": [
|
4 |
+
"CamembertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 5,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 6,
|
10 |
+
"finetuning_task": "pos",
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "VER:infi",
|
16 |
+
"1": "KON",
|
17 |
+
"2": "VER:",
|
18 |
+
"3": "VER:impf",
|
19 |
+
"4": "VER:cond",
|
20 |
+
"5": "PRO:IND",
|
21 |
+
"6": "ABR",
|
22 |
+
"7": "DET:POS",
|
23 |
+
"8": "PRP:det",
|
24 |
+
"9": "FW",
|
25 |
+
"10": "PRP",
|
26 |
+
"11": "VER:pper",
|
27 |
+
"12": "PRO:DEM",
|
28 |
+
"13": "PRO:REL",
|
29 |
+
"14": "VER:subi",
|
30 |
+
"15": "SYM",
|
31 |
+
"16": "VER:impe",
|
32 |
+
"17": "PRO:POS",
|
33 |
+
"18": "#",
|
34 |
+
"19": "PRO",
|
35 |
+
"20": "futu",
|
36 |
+
"21": "DET:art",
|
37 |
+
"22": "PRO:PER",
|
38 |
+
"23": "NOM",
|
39 |
+
"24": "VER:subp",
|
40 |
+
"25": "INT",
|
41 |
+
"26": "VER:futu",
|
42 |
+
"27": "NUM",
|
43 |
+
"28": "NAM",
|
44 |
+
"29": "@",
|
45 |
+
"30": "ADV",
|
46 |
+
"31": "VER:ppre",
|
47 |
+
"32": "VER:pres",
|
48 |
+
"33": "PUN:cit",
|
49 |
+
"34": "PUN",
|
50 |
+
"35": "DET:ART",
|
51 |
+
"36": "VER:simp",
|
52 |
+
"37": "SENT",
|
53 |
+
"38": "ADJ"
|
54 |
+
},
|
55 |
+
"initializer_range": 0.02,
|
56 |
+
"intermediate_size": 3072,
|
57 |
+
"label2id": {
|
58 |
+
"#": 18,
|
59 |
+
"@": 29,
|
60 |
+
"ABR": 6,
|
61 |
+
"ADJ": 38,
|
62 |
+
"ADV": 30,
|
63 |
+
"DET:ART": 35,
|
64 |
+
"DET:POS": 7,
|
65 |
+
"DET:art": 21,
|
66 |
+
"FW": 9,
|
67 |
+
"INT": 25,
|
68 |
+
"KON": 1,
|
69 |
+
"NAM": 28,
|
70 |
+
"NOM": 23,
|
71 |
+
"NUM": 27,
|
72 |
+
"PRO": 19,
|
73 |
+
"PRO:DEM": 12,
|
74 |
+
"PRO:IND": 5,
|
75 |
+
"PRO:PER": 22,
|
76 |
+
"PRO:POS": 17,
|
77 |
+
"PRO:REL": 13,
|
78 |
+
"PRP": 10,
|
79 |
+
"PRP:det": 8,
|
80 |
+
"PUN": 34,
|
81 |
+
"PUN:cit": 33,
|
82 |
+
"SENT": 37,
|
83 |
+
"SYM": 15,
|
84 |
+
"VER:": 2,
|
85 |
+
"VER:cond": 4,
|
86 |
+
"VER:futu": 26,
|
87 |
+
"VER:impe": 16,
|
88 |
+
"VER:impf": 3,
|
89 |
+
"VER:infi": 0,
|
90 |
+
"VER:pper": 11,
|
91 |
+
"VER:ppre": 31,
|
92 |
+
"VER:pres": 32,
|
93 |
+
"VER:simp": 36,
|
94 |
+
"VER:subi": 14,
|
95 |
+
"VER:subp": 24,
|
96 |
+
"futu": 20
|
97 |
+
},
|
98 |
+
"layer_norm_eps": 1e-05,
|
99 |
+
"max_position_embeddings": 514,
|
100 |
+
"model_type": "camembert",
|
101 |
+
"num_attention_heads": 12,
|
102 |
+
"num_hidden_layers": 12,
|
103 |
+
"output_past": true,
|
104 |
+
"pad_token_id": 1,
|
105 |
+
"position_embedding_type": "absolute",
|
106 |
+
"torch_dtype": "float32",
|
107 |
+
"transformers_version": "4.25.1",
|
108 |
+
"type_vocab_size": 1,
|
109 |
+
"use_cache": true,
|
110 |
+
"vocab_size": 32005
|
111 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.95,
|
3 |
+
"eval_accuracy": 0.9768268831861554,
|
4 |
+
"eval_f1": 0.9743472495313,
|
5 |
+
"eval_loss": 0.5415592193603516,
|
6 |
+
"eval_precision": 0.974243301734386,
|
7 |
+
"eval_recall": 0.9744512195121952,
|
8 |
+
"eval_runtime": 1.948,
|
9 |
+
"eval_samples": 1431,
|
10 |
+
"eval_samples_per_second": 851.633,
|
11 |
+
"eval_steps_per_second": 3.593
|
12 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3351f608977c0896611d38dfcf41b569194b05050afad76bedb879625d120b1b
|
3 |
+
size 440316465
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:988bc5a00281c6d210a5d34bd143d0363741a432fefe741bf71e61b1869d4314
|
3 |
+
size 810912
|
special_tokens_map.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<s>NOTUSED",
|
4 |
+
"</s>NOTUSED"
|
5 |
+
],
|
6 |
+
"bos_token": "<s>",
|
7 |
+
"cls_token": "<s>",
|
8 |
+
"eos_token": "</s>",
|
9 |
+
"mask_token": {
|
10 |
+
"content": "<mask>",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"sep_token": "</s>",
|
18 |
+
"unk_token": "<unk>"
|
19 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<s>NOTUSED",
|
4 |
+
"</s>NOTUSED"
|
5 |
+
],
|
6 |
+
"bos_token": "<s>",
|
7 |
+
"cls_token": "<s>",
|
8 |
+
"eos_token": "</s>",
|
9 |
+
"mask_token": {
|
10 |
+
"__type": "AddedToken",
|
11 |
+
"content": "<mask>",
|
12 |
+
"lstrip": true,
|
13 |
+
"normalized": true,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"model_max_length": 512,
|
18 |
+
"name_or_path": "almanach/camembert-base",
|
19 |
+
"pad_token": "<pad>",
|
20 |
+
"sep_token": "</s>",
|
21 |
+
"special_tokens_map_file": null,
|
22 |
+
"token": null,
|
23 |
+
"tokenizer_class": "CamembertTokenizer",
|
24 |
+
"unk_token": "<unk>"
|
25 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.95,
|
3 |
+
"train_loss": 1.9360494545527867,
|
4 |
+
"train_runtime": 526.0611,
|
5 |
+
"train_samples": 14928,
|
6 |
+
"train_samples_per_second": 1135.077,
|
7 |
+
"train_steps_per_second": 1.065
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9743472495313,
|
3 |
+
"best_model_checkpoint": "models/pos_final_mono_fr/checkpoint-560",
|
4 |
+
"epoch": 39.94915254237288,
|
5 |
+
"global_step": 560,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.95,
|
12 |
+
"eval_accuracy": 0.021484027736620635,
|
13 |
+
"eval_f1": 0.02014146604497732,
|
14 |
+
"eval_loss": 3.6696622371673584,
|
15 |
+
"eval_precision": 0.02098896013750248,
|
16 |
+
"eval_recall": 0.019359756097560975,
|
17 |
+
"eval_runtime": 1.991,
|
18 |
+
"eval_samples_per_second": 833.259,
|
19 |
+
"eval_steps_per_second": 3.516,
|
20 |
+
"step": 14
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.95,
|
24 |
+
"eval_accuracy": 0.051117169442304274,
|
25 |
+
"eval_f1": 0.049818939975858664,
|
26 |
+
"eval_loss": 3.6328794956207275,
|
27 |
+
"eval_precision": 0.051272950211351684,
|
28 |
+
"eval_recall": 0.048445121951219514,
|
29 |
+
"eval_runtime": 1.9795,
|
30 |
+
"eval_samples_per_second": 838.108,
|
31 |
+
"eval_steps_per_second": 3.536,
|
32 |
+
"step": 28
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 2.95,
|
36 |
+
"eval_accuracy": 0.12674094707520892,
|
37 |
+
"eval_f1": 0.11132299612354632,
|
38 |
+
"eval_loss": 3.5738770961761475,
|
39 |
+
"eval_precision": 0.11422247882986913,
|
40 |
+
"eval_recall": 0.1085670731707317,
|
41 |
+
"eval_runtime": 2.9806,
|
42 |
+
"eval_samples_per_second": 556.603,
|
43 |
+
"eval_steps_per_second": 2.349,
|
44 |
+
"step": 42
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 3.95,
|
48 |
+
"eval_accuracy": 0.30611035381971197,
|
49 |
+
"eval_f1": 0.22206610578982539,
|
50 |
+
"eval_loss": 3.4791259765625,
|
51 |
+
"eval_precision": 0.2535112084816713,
|
52 |
+
"eval_recall": 0.1975609756097561,
|
53 |
+
"eval_runtime": 1.9318,
|
54 |
+
"eval_samples_per_second": 858.799,
|
55 |
+
"eval_steps_per_second": 3.624,
|
56 |
+
"step": 56
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 4.95,
|
60 |
+
"eval_accuracy": 0.3788300835654596,
|
61 |
+
"eval_f1": 0.25393978707978787,
|
62 |
+
"eval_loss": 3.3377487659454346,
|
63 |
+
"eval_precision": 0.339298460283471,
|
64 |
+
"eval_recall": 0.20289634146341465,
|
65 |
+
"eval_runtime": 1.9526,
|
66 |
+
"eval_samples_per_second": 849.649,
|
67 |
+
"eval_steps_per_second": 3.585,
|
68 |
+
"step": 70
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 5.95,
|
72 |
+
"eval_accuracy": 0.34273691696793696,
|
73 |
+
"eval_f1": 0.20375216215017516,
|
74 |
+
"eval_loss": 3.188615560531616,
|
75 |
+
"eval_precision": 0.3736782170164308,
|
76 |
+
"eval_recall": 0.1400609756097561,
|
77 |
+
"eval_runtime": 1.9288,
|
78 |
+
"eval_samples_per_second": 860.111,
|
79 |
+
"eval_steps_per_second": 3.629,
|
80 |
+
"step": 84
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 6.95,
|
84 |
+
"eval_accuracy": 0.4599656255556214,
|
85 |
+
"eval_f1": 0.36921620863712845,
|
86 |
+
"eval_loss": 3.0504870414733887,
|
87 |
+
"eval_precision": 0.434243073878628,
|
88 |
+
"eval_recall": 0.3211280487804878,
|
89 |
+
"eval_runtime": 1.9835,
|
90 |
+
"eval_samples_per_second": 836.412,
|
91 |
+
"eval_steps_per_second": 3.529,
|
92 |
+
"step": 98
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 7.95,
|
96 |
+
"eval_accuracy": 0.5282403840455165,
|
97 |
+
"eval_f1": 0.4701918608510921,
|
98 |
+
"eval_loss": 2.8996212482452393,
|
99 |
+
"eval_precision": 0.5159915488853272,
|
100 |
+
"eval_recall": 0.431859756097561,
|
101 |
+
"eval_runtime": 2.2513,
|
102 |
+
"eval_samples_per_second": 736.924,
|
103 |
+
"eval_steps_per_second": 3.109,
|
104 |
+
"step": 112
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 8.95,
|
108 |
+
"eval_accuracy": 0.573164226871333,
|
109 |
+
"eval_f1": 0.5221832422289304,
|
110 |
+
"eval_loss": 2.748504161834717,
|
111 |
+
"eval_precision": 0.5617342460944357,
|
112 |
+
"eval_recall": 0.48783536585365855,
|
113 |
+
"eval_runtime": 1.9301,
|
114 |
+
"eval_samples_per_second": 859.535,
|
115 |
+
"eval_steps_per_second": 3.627,
|
116 |
+
"step": 126
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 9.95,
|
120 |
+
"eval_accuracy": 0.6246369940141053,
|
121 |
+
"eval_f1": 0.5703931402685649,
|
122 |
+
"eval_loss": 2.586193084716797,
|
123 |
+
"eval_precision": 0.6076525336091003,
|
124 |
+
"eval_recall": 0.5374390243902439,
|
125 |
+
"eval_runtime": 2.1049,
|
126 |
+
"eval_samples_per_second": 788.176,
|
127 |
+
"eval_steps_per_second": 3.326,
|
128 |
+
"step": 140
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 10.95,
|
132 |
+
"eval_accuracy": 0.6886742132400877,
|
133 |
+
"eval_f1": 0.6548560582094275,
|
134 |
+
"eval_loss": 2.420483112335205,
|
135 |
+
"eval_precision": 0.6804733727810651,
|
136 |
+
"eval_recall": 0.6310975609756098,
|
137 |
+
"eval_runtime": 2.1866,
|
138 |
+
"eval_samples_per_second": 758.715,
|
139 |
+
"eval_steps_per_second": 3.201,
|
140 |
+
"step": 154
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 11.95,
|
144 |
+
"eval_accuracy": 0.7838854975404492,
|
145 |
+
"eval_f1": 0.7690782646407386,
|
146 |
+
"eval_loss": 2.260331869125366,
|
147 |
+
"eval_precision": 0.7816327173125964,
|
148 |
+
"eval_recall": 0.7569207317073171,
|
149 |
+
"eval_runtime": 2.2785,
|
150 |
+
"eval_samples_per_second": 728.116,
|
151 |
+
"eval_steps_per_second": 3.072,
|
152 |
+
"step": 168
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 12.95,
|
156 |
+
"eval_accuracy": 0.83701772061874,
|
157 |
+
"eval_f1": 0.8335373317013463,
|
158 |
+
"eval_loss": 2.1123812198638916,
|
159 |
+
"eval_precision": 0.8366093366093366,
|
160 |
+
"eval_recall": 0.8304878048780487,
|
161 |
+
"eval_runtime": 2.9322,
|
162 |
+
"eval_samples_per_second": 565.792,
|
163 |
+
"eval_steps_per_second": 2.387,
|
164 |
+
"step": 182
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 13.95,
|
168 |
+
"eval_accuracy": 0.8735553843418479,
|
169 |
+
"eval_f1": 0.8685824105426924,
|
170 |
+
"eval_loss": 1.9825972318649292,
|
171 |
+
"eval_precision": 0.8690861363775105,
|
172 |
+
"eval_recall": 0.8680792682926829,
|
173 |
+
"eval_runtime": 1.9874,
|
174 |
+
"eval_samples_per_second": 834.748,
|
175 |
+
"eval_steps_per_second": 3.522,
|
176 |
+
"step": 196
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 14.95,
|
180 |
+
"eval_accuracy": 0.9239613583832158,
|
181 |
+
"eval_f1": 0.9204770765335692,
|
182 |
+
"eval_loss": 1.8721418380737305,
|
183 |
+
"eval_precision": 0.9209546481108466,
|
184 |
+
"eval_recall": 0.92,
|
185 |
+
"eval_runtime": 1.9558,
|
186 |
+
"eval_samples_per_second": 848.258,
|
187 |
+
"eval_steps_per_second": 3.579,
|
188 |
+
"step": 210
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 15.95,
|
192 |
+
"eval_accuracy": 0.9416819771232146,
|
193 |
+
"eval_f1": 0.9391052511241521,
|
194 |
+
"eval_loss": 1.7779291868209839,
|
195 |
+
"eval_precision": 0.9390336838896509,
|
196 |
+
"eval_recall": 0.9391768292682927,
|
197 |
+
"eval_runtime": 1.9975,
|
198 |
+
"eval_samples_per_second": 830.55,
|
199 |
+
"eval_steps_per_second": 3.504,
|
200 |
+
"step": 224
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 16.95,
|
204 |
+
"eval_accuracy": 0.9466010786463581,
|
205 |
+
"eval_f1": 0.944723771216138,
|
206 |
+
"eval_loss": 1.698561429977417,
|
207 |
+
"eval_precision": 0.9442346348297497,
|
208 |
+
"eval_recall": 0.9452134146341463,
|
209 |
+
"eval_runtime": 1.9516,
|
210 |
+
"eval_samples_per_second": 850.075,
|
211 |
+
"eval_steps_per_second": 3.587,
|
212 |
+
"step": 238
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 17.95,
|
216 |
+
"eval_accuracy": 0.9486161322823445,
|
217 |
+
"eval_f1": 0.9471599219892736,
|
218 |
+
"eval_loss": 1.6294448375701904,
|
219 |
+
"eval_precision": 0.9466983430799221,
|
220 |
+
"eval_recall": 0.9476219512195122,
|
221 |
+
"eval_runtime": 1.9621,
|
222 |
+
"eval_samples_per_second": 845.505,
|
223 |
+
"eval_steps_per_second": 3.568,
|
224 |
+
"step": 252
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 18.95,
|
228 |
+
"eval_accuracy": 0.9498607242339833,
|
229 |
+
"eval_f1": 0.9487042764210301,
|
230 |
+
"eval_loss": 1.5666829347610474,
|
231 |
+
"eval_precision": 0.948140929991778,
|
232 |
+
"eval_recall": 0.9492682926829268,
|
233 |
+
"eval_runtime": 2.1244,
|
234 |
+
"eval_samples_per_second": 780.914,
|
235 |
+
"eval_steps_per_second": 3.295,
|
236 |
+
"step": 266
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 19.95,
|
240 |
+
"eval_accuracy": 0.9523499081372607,
|
241 |
+
"eval_f1": 0.9514249592542383,
|
242 |
+
"eval_loss": 1.5073306560516357,
|
243 |
+
"eval_precision": 0.9506864326808925,
|
244 |
+
"eval_recall": 0.9521646341463414,
|
245 |
+
"eval_runtime": 1.9609,
|
246 |
+
"eval_samples_per_second": 846.058,
|
247 |
+
"eval_steps_per_second": 3.57,
|
248 |
+
"step": 280
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 20.95,
|
252 |
+
"eval_accuracy": 0.9551650565993006,
|
253 |
+
"eval_f1": 0.9544048870405071,
|
254 |
+
"eval_loss": 1.4499109983444214,
|
255 |
+
"eval_precision": 0.953780105349694,
|
256 |
+
"eval_recall": 0.9550304878048781,
|
257 |
+
"eval_runtime": 2.9847,
|
258 |
+
"eval_samples_per_second": 555.827,
|
259 |
+
"eval_steps_per_second": 2.345,
|
260 |
+
"step": 294
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 21.95,
|
264 |
+
"eval_accuracy": 0.9562911159841166,
|
265 |
+
"eval_f1": 0.9558884029925795,
|
266 |
+
"eval_loss": 1.3926490545272827,
|
267 |
+
"eval_precision": 0.9554662036613969,
|
268 |
+
"eval_recall": 0.9563109756097561,
|
269 |
+
"eval_runtime": 2.0934,
|
270 |
+
"eval_samples_per_second": 792.487,
|
271 |
+
"eval_steps_per_second": 3.344,
|
272 |
+
"step": 308
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 22.95,
|
276 |
+
"eval_accuracy": 0.9612102175072601,
|
277 |
+
"eval_f1": 0.961168007802975,
|
278 |
+
"eval_loss": 1.3373351097106934,
|
279 |
+
"eval_precision": 0.9609336908824964,
|
280 |
+
"eval_recall": 0.9614024390243903,
|
281 |
+
"eval_runtime": 2.5845,
|
282 |
+
"eval_samples_per_second": 641.892,
|
283 |
+
"eval_steps_per_second": 2.708,
|
284 |
+
"step": 322
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 23.95,
|
288 |
+
"eval_accuracy": 0.9622770106086648,
|
289 |
+
"eval_f1": 0.9623058515097475,
|
290 |
+
"eval_loss": 1.2815097570419312,
|
291 |
+
"eval_precision": 0.962203188343951,
|
292 |
+
"eval_recall": 0.9624085365853658,
|
293 |
+
"eval_runtime": 1.9491,
|
294 |
+
"eval_samples_per_second": 851.178,
|
295 |
+
"eval_steps_per_second": 3.591,
|
296 |
+
"step": 336
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 24.95,
|
300 |
+
"eval_accuracy": 0.9646180288034137,
|
301 |
+
"eval_f1": 0.9648307087214354,
|
302 |
+
"eval_loss": 1.2245593070983887,
|
303 |
+
"eval_precision": 0.9648748361130591,
|
304 |
+
"eval_recall": 0.9647865853658537,
|
305 |
+
"eval_runtime": 2.9881,
|
306 |
+
"eval_samples_per_second": 555.195,
|
307 |
+
"eval_steps_per_second": 2.343,
|
308 |
+
"step": 350
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 25.95,
|
312 |
+
"eval_accuracy": 0.9647661945119421,
|
313 |
+
"eval_f1": 0.9652270683110508,
|
314 |
+
"eval_loss": 1.16820228099823,
|
315 |
+
"eval_precision": 0.9652712138305333,
|
316 |
+
"eval_recall": 0.9651829268292683,
|
317 |
+
"eval_runtime": 2.9793,
|
318 |
+
"eval_samples_per_second": 556.84,
|
319 |
+
"eval_steps_per_second": 2.35,
|
320 |
+
"step": 364
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 26.95,
|
324 |
+
"eval_accuracy": 0.9660996858886979,
|
325 |
+
"eval_f1": 0.9654436860068261,
|
326 |
+
"eval_loss": 1.1113808155059814,
|
327 |
+
"eval_precision": 0.9649731968810916,
|
328 |
+
"eval_recall": 0.9659146341463415,
|
329 |
+
"eval_runtime": 2.0371,
|
330 |
+
"eval_samples_per_second": 814.377,
|
331 |
+
"eval_steps_per_second": 3.436,
|
332 |
+
"step": 378
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 27.95,
|
336 |
+
"eval_accuracy": 0.9699223611687311,
|
337 |
+
"eval_f1": 0.9672198601014949,
|
338 |
+
"eval_loss": 1.0521485805511475,
|
339 |
+
"eval_precision": 0.9669398823852037,
|
340 |
+
"eval_recall": 0.9675,
|
341 |
+
"eval_runtime": 2.1723,
|
342 |
+
"eval_samples_per_second": 763.722,
|
343 |
+
"eval_steps_per_second": 3.222,
|
344 |
+
"step": 392
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 28.95,
|
348 |
+
"eval_accuracy": 0.9706928228530789,
|
349 |
+
"eval_f1": 0.9678383074718775,
|
350 |
+
"eval_loss": 0.9949794411659241,
|
351 |
+
"eval_precision": 0.9677498018655124,
|
352 |
+
"eval_recall": 0.9679268292682927,
|
353 |
+
"eval_runtime": 2.9777,
|
354 |
+
"eval_samples_per_second": 557.141,
|
355 |
+
"eval_steps_per_second": 2.351,
|
356 |
+
"step": 406
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 29.95,
|
360 |
+
"eval_accuracy": 0.9716410833876608,
|
361 |
+
"eval_f1": 0.9688157293095565,
|
362 |
+
"eval_loss": 0.9363731741905212,
|
363 |
+
"eval_precision": 0.968668088997257,
|
364 |
+
"eval_recall": 0.9689634146341464,
|
365 |
+
"eval_runtime": 2.0063,
|
366 |
+
"eval_samples_per_second": 826.911,
|
367 |
+
"eval_steps_per_second": 3.489,
|
368 |
+
"step": 420
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 30.95,
|
372 |
+
"eval_accuracy": 0.9720559473715403,
|
373 |
+
"eval_f1": 0.9692110718205097,
|
374 |
+
"eval_loss": 0.8799633383750916,
|
375 |
+
"eval_precision": 0.9690929041697147,
|
376 |
+
"eval_recall": 0.969329268292683,
|
377 |
+
"eval_runtime": 1.9828,
|
378 |
+
"eval_samples_per_second": 836.683,
|
379 |
+
"eval_steps_per_second": 3.53,
|
380 |
+
"step": 434
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 31.95,
|
384 |
+
"eval_accuracy": 0.9726189770639483,
|
385 |
+
"eval_f1": 0.9695962936434156,
|
386 |
+
"eval_loss": 0.8233166337013245,
|
387 |
+
"eval_precision": 0.9693451564737788,
|
388 |
+
"eval_recall": 0.9698475609756098,
|
389 |
+
"eval_runtime": 1.9361,
|
390 |
+
"eval_samples_per_second": 856.891,
|
391 |
+
"eval_steps_per_second": 3.616,
|
392 |
+
"step": 448
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 32.95,
|
396 |
+
"eval_accuracy": 0.9733301724648847,
|
397 |
+
"eval_f1": 0.9703057833602635,
|
398 |
+
"eval_loss": 0.7679479122161865,
|
399 |
+
"eval_precision": 0.9702762026705689,
|
400 |
+
"eval_recall": 0.9703353658536585,
|
401 |
+
"eval_runtime": 1.9498,
|
402 |
+
"eval_samples_per_second": 850.85,
|
403 |
+
"eval_steps_per_second": 3.59,
|
404 |
+
"step": 462
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 33.95,
|
408 |
+
"eval_accuracy": 0.9737450364487643,
|
409 |
+
"eval_f1": 0.9711132452249204,
|
410 |
+
"eval_loss": 0.7146441340446472,
|
411 |
+
"eval_precision": 0.9710984421206671,
|
412 |
+
"eval_recall": 0.9711280487804878,
|
413 |
+
"eval_runtime": 1.9736,
|
414 |
+
"eval_samples_per_second": 840.614,
|
415 |
+
"eval_steps_per_second": 3.547,
|
416 |
+
"step": 476
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 34.95,
|
420 |
+
"eval_accuracy": 0.9749599952586974,
|
421 |
+
"eval_f1": 0.9722899646384587,
|
422 |
+
"eval_loss": 0.6641064286231995,
|
423 |
+
"eval_precision": 0.9721714216044867,
|
424 |
+
"eval_recall": 0.9724085365853659,
|
425 |
+
"eval_runtime": 1.9368,
|
426 |
+
"eval_samples_per_second": 856.569,
|
427 |
+
"eval_steps_per_second": 3.614,
|
428 |
+
"step": 490
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 35.68,
|
432 |
+
"learning_rate": 5e-05,
|
433 |
+
"loss": 2.0937,
|
434 |
+
"step": 500
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 35.95,
|
438 |
+
"eval_accuracy": 0.9755230249511053,
|
439 |
+
"eval_f1": 0.9729268292682927,
|
440 |
+
"eval_loss": 0.6186906099319458,
|
441 |
+
"eval_precision": 0.9729268292682927,
|
442 |
+
"eval_recall": 0.9729268292682927,
|
443 |
+
"eval_runtime": 1.993,
|
444 |
+
"eval_samples_per_second": 832.399,
|
445 |
+
"eval_steps_per_second": 3.512,
|
446 |
+
"step": 504
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 36.95,
|
450 |
+
"eval_accuracy": 0.9756119243762224,
|
451 |
+
"eval_f1": 0.9729490833168234,
|
452 |
+
"eval_loss": 0.5833659172058105,
|
453 |
+
"eval_precision": 0.9726970777341012,
|
454 |
+
"eval_recall": 0.9732012195121951,
|
455 |
+
"eval_runtime": 2.9665,
|
456 |
+
"eval_samples_per_second": 559.252,
|
457 |
+
"eval_steps_per_second": 2.36,
|
458 |
+
"step": 518
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 37.95,
|
462 |
+
"eval_accuracy": 0.9761749540686303,
|
463 |
+
"eval_f1": 0.9736946383393786,
|
464 |
+
"eval_loss": 0.5605461597442627,
|
465 |
+
"eval_precision": 0.97348692631194,
|
466 |
+
"eval_recall": 0.9739024390243902,
|
467 |
+
"eval_runtime": 2.0134,
|
468 |
+
"eval_samples_per_second": 823.972,
|
469 |
+
"eval_steps_per_second": 3.477,
|
470 |
+
"step": 532
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 38.95,
|
474 |
+
"eval_accuracy": 0.9764712854856872,
|
475 |
+
"eval_f1": 0.9739244403127238,
|
476 |
+
"eval_loss": 0.5465701222419739,
|
477 |
+
"eval_precision": 0.9736721821007405,
|
478 |
+
"eval_recall": 0.9741768292682926,
|
479 |
+
"eval_runtime": 2.9641,
|
480 |
+
"eval_samples_per_second": 559.689,
|
481 |
+
"eval_steps_per_second": 2.362,
|
482 |
+
"step": 546
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 39.95,
|
486 |
+
"eval_accuracy": 0.9768268831861554,
|
487 |
+
"eval_f1": 0.9743472495313,
|
488 |
+
"eval_loss": 0.5415592193603516,
|
489 |
+
"eval_precision": 0.974243301734386,
|
490 |
+
"eval_recall": 0.9744512195121952,
|
491 |
+
"eval_runtime": 1.9918,
|
492 |
+
"eval_samples_per_second": 832.894,
|
493 |
+
"eval_steps_per_second": 3.514,
|
494 |
+
"step": 560
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 39.95,
|
498 |
+
"step": 560,
|
499 |
+
"total_flos": 3.723450094214784e+16,
|
500 |
+
"train_loss": 1.9360494545527867,
|
501 |
+
"train_runtime": 526.0611,
|
502 |
+
"train_samples_per_second": 1135.077,
|
503 |
+
"train_steps_per_second": 1.065
|
504 |
+
}
|
505 |
+
],
|
506 |
+
"max_steps": 560,
|
507 |
+
"num_train_epochs": 40,
|
508 |
+
"total_flos": 3.723450094214784e+16,
|
509 |
+
"trial_name": null,
|
510 |
+
"trial_params": null
|
511 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4c3bc0bf649b8aee94ec3886118cfcb6f816ebb22141d51777c8d76e625b62c
|
3 |
+
size 3439
|