pranaydeeps commited on
Commit
42e474d
·
verified ·
1 Parent(s): c9de508

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: pos_final_mono_fr
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # pos_final_mono_fr
19
+
20
+ This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5416
23
+ - Precision: 0.9742
24
+ - Recall: 0.9745
25
+ - F1: 0.9743
26
+ - Accuracy: 0.9768
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 256
47
+ - eval_batch_size: 256
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 1024
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 500
54
+ - num_epochs: 40.0
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | No log | 0.95 | 14 | 3.6697 | 0.0210 | 0.0194 | 0.0201 | 0.0215 |
62
+ | No log | 1.95 | 28 | 3.6329 | 0.0513 | 0.0484 | 0.0498 | 0.0511 |
63
+ | No log | 2.95 | 42 | 3.5739 | 0.1142 | 0.1086 | 0.1113 | 0.1267 |
64
+ | No log | 3.95 | 56 | 3.4791 | 0.2535 | 0.1976 | 0.2221 | 0.3061 |
65
+ | No log | 4.95 | 70 | 3.3377 | 0.3393 | 0.2029 | 0.2539 | 0.3788 |
66
+ | No log | 5.95 | 84 | 3.1886 | 0.3737 | 0.1401 | 0.2038 | 0.3427 |
67
+ | No log | 6.95 | 98 | 3.0505 | 0.4342 | 0.3211 | 0.3692 | 0.4600 |
68
+ | No log | 7.95 | 112 | 2.8996 | 0.5160 | 0.4319 | 0.4702 | 0.5282 |
69
+ | No log | 8.95 | 126 | 2.7485 | 0.5617 | 0.4878 | 0.5222 | 0.5732 |
70
+ | No log | 9.95 | 140 | 2.5862 | 0.6077 | 0.5374 | 0.5704 | 0.6246 |
71
+ | No log | 10.95 | 154 | 2.4205 | 0.6805 | 0.6311 | 0.6549 | 0.6887 |
72
+ | No log | 11.95 | 168 | 2.2603 | 0.7816 | 0.7569 | 0.7691 | 0.7839 |
73
+ | No log | 12.95 | 182 | 2.1124 | 0.8366 | 0.8305 | 0.8335 | 0.8370 |
74
+ | No log | 13.95 | 196 | 1.9826 | 0.8691 | 0.8681 | 0.8686 | 0.8736 |
75
+ | No log | 14.95 | 210 | 1.8721 | 0.9210 | 0.92 | 0.9205 | 0.9240 |
76
+ | No log | 15.95 | 224 | 1.7779 | 0.9390 | 0.9392 | 0.9391 | 0.9417 |
77
+ | No log | 16.95 | 238 | 1.6986 | 0.9442 | 0.9452 | 0.9447 | 0.9466 |
78
+ | No log | 17.95 | 252 | 1.6294 | 0.9467 | 0.9476 | 0.9472 | 0.9486 |
79
+ | No log | 18.95 | 266 | 1.5667 | 0.9481 | 0.9493 | 0.9487 | 0.9499 |
80
+ | No log | 19.95 | 280 | 1.5073 | 0.9507 | 0.9522 | 0.9514 | 0.9523 |
81
+ | No log | 20.95 | 294 | 1.4499 | 0.9538 | 0.9550 | 0.9544 | 0.9552 |
82
+ | No log | 21.95 | 308 | 1.3926 | 0.9555 | 0.9563 | 0.9559 | 0.9563 |
83
+ | No log | 22.95 | 322 | 1.3373 | 0.9609 | 0.9614 | 0.9612 | 0.9612 |
84
+ | No log | 23.95 | 336 | 1.2815 | 0.9622 | 0.9624 | 0.9623 | 0.9623 |
85
+ | No log | 24.95 | 350 | 1.2246 | 0.9649 | 0.9648 | 0.9648 | 0.9646 |
86
+ | No log | 25.95 | 364 | 1.1682 | 0.9653 | 0.9652 | 0.9652 | 0.9648 |
87
+ | No log | 26.95 | 378 | 1.1114 | 0.9650 | 0.9659 | 0.9654 | 0.9661 |
88
+ | No log | 27.95 | 392 | 1.0521 | 0.9669 | 0.9675 | 0.9672 | 0.9699 |
89
+ | No log | 28.95 | 406 | 0.9950 | 0.9677 | 0.9679 | 0.9678 | 0.9707 |
90
+ | No log | 29.95 | 420 | 0.9364 | 0.9687 | 0.9690 | 0.9688 | 0.9716 |
91
+ | No log | 30.95 | 434 | 0.8800 | 0.9691 | 0.9693 | 0.9692 | 0.9721 |
92
+ | No log | 31.95 | 448 | 0.8233 | 0.9693 | 0.9698 | 0.9696 | 0.9726 |
93
+ | No log | 32.95 | 462 | 0.7679 | 0.9703 | 0.9703 | 0.9703 | 0.9733 |
94
+ | No log | 33.95 | 476 | 0.7146 | 0.9711 | 0.9711 | 0.9711 | 0.9737 |
95
+ | No log | 34.95 | 490 | 0.6641 | 0.9722 | 0.9724 | 0.9723 | 0.9750 |
96
+ | 2.0937 | 35.95 | 504 | 0.6187 | 0.9729 | 0.9729 | 0.9729 | 0.9755 |
97
+ | 2.0937 | 36.95 | 518 | 0.5834 | 0.9727 | 0.9732 | 0.9729 | 0.9756 |
98
+ | 2.0937 | 37.95 | 532 | 0.5605 | 0.9735 | 0.9739 | 0.9737 | 0.9762 |
99
+ | 2.0937 | 38.95 | 546 | 0.5466 | 0.9737 | 0.9742 | 0.9739 | 0.9765 |
100
+ | 2.0937 | 39.95 | 560 | 0.5416 | 0.9742 | 0.9745 | 0.9743 | 0.9768 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.25.1
106
+ - Pytorch 1.12.0
107
+ - Datasets 2.18.0
108
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 39.95,
3
+ "eval_accuracy": 0.9768268831861554,
4
+ "eval_f1": 0.9743472495313,
5
+ "eval_loss": 0.5415592193603516,
6
+ "eval_precision": 0.974243301734386,
7
+ "eval_recall": 0.9744512195121952,
8
+ "eval_runtime": 1.948,
9
+ "eval_samples": 1431,
10
+ "eval_samples_per_second": 851.633,
11
+ "eval_steps_per_second": 3.593,
12
+ "train_loss": 1.9360494545527867,
13
+ "train_runtime": 526.0611,
14
+ "train_samples": 14928,
15
+ "train_samples_per_second": 1135.077,
16
+ "train_steps_per_second": 1.065
17
+ }
config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "almanach/camembert-base",
3
+ "architectures": [
4
+ "CamembertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 5,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 6,
10
+ "finetuning_task": "pos",
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "id2label": {
15
+ "0": "VER:infi",
16
+ "1": "KON",
17
+ "2": "VER:",
18
+ "3": "VER:impf",
19
+ "4": "VER:cond",
20
+ "5": "PRO:IND",
21
+ "6": "ABR",
22
+ "7": "DET:POS",
23
+ "8": "PRP:det",
24
+ "9": "FW",
25
+ "10": "PRP",
26
+ "11": "VER:pper",
27
+ "12": "PRO:DEM",
28
+ "13": "PRO:REL",
29
+ "14": "VER:subi",
30
+ "15": "SYM",
31
+ "16": "VER:impe",
32
+ "17": "PRO:POS",
33
+ "18": "#",
34
+ "19": "PRO",
35
+ "20": "futu",
36
+ "21": "DET:art",
37
+ "22": "PRO:PER",
38
+ "23": "NOM",
39
+ "24": "VER:subp",
40
+ "25": "INT",
41
+ "26": "VER:futu",
42
+ "27": "NUM",
43
+ "28": "NAM",
44
+ "29": "@",
45
+ "30": "ADV",
46
+ "31": "VER:ppre",
47
+ "32": "VER:pres",
48
+ "33": "PUN:cit",
49
+ "34": "PUN",
50
+ "35": "DET:ART",
51
+ "36": "VER:simp",
52
+ "37": "SENT",
53
+ "38": "ADJ"
54
+ },
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 3072,
57
+ "label2id": {
58
+ "#": 18,
59
+ "@": 29,
60
+ "ABR": 6,
61
+ "ADJ": 38,
62
+ "ADV": 30,
63
+ "DET:ART": 35,
64
+ "DET:POS": 7,
65
+ "DET:art": 21,
66
+ "FW": 9,
67
+ "INT": 25,
68
+ "KON": 1,
69
+ "NAM": 28,
70
+ "NOM": 23,
71
+ "NUM": 27,
72
+ "PRO": 19,
73
+ "PRO:DEM": 12,
74
+ "PRO:IND": 5,
75
+ "PRO:PER": 22,
76
+ "PRO:POS": 17,
77
+ "PRO:REL": 13,
78
+ "PRP": 10,
79
+ "PRP:det": 8,
80
+ "PUN": 34,
81
+ "PUN:cit": 33,
82
+ "SENT": 37,
83
+ "SYM": 15,
84
+ "VER:": 2,
85
+ "VER:cond": 4,
86
+ "VER:futu": 26,
87
+ "VER:impe": 16,
88
+ "VER:impf": 3,
89
+ "VER:infi": 0,
90
+ "VER:pper": 11,
91
+ "VER:ppre": 31,
92
+ "VER:pres": 32,
93
+ "VER:simp": 36,
94
+ "VER:subi": 14,
95
+ "VER:subp": 24,
96
+ "futu": 20
97
+ },
98
+ "layer_norm_eps": 1e-05,
99
+ "max_position_embeddings": 514,
100
+ "model_type": "camembert",
101
+ "num_attention_heads": 12,
102
+ "num_hidden_layers": 12,
103
+ "output_past": true,
104
+ "pad_token_id": 1,
105
+ "position_embedding_type": "absolute",
106
+ "torch_dtype": "float32",
107
+ "transformers_version": "4.25.1",
108
+ "type_vocab_size": 1,
109
+ "use_cache": true,
110
+ "vocab_size": 32005
111
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 39.95,
3
+ "eval_accuracy": 0.9768268831861554,
4
+ "eval_f1": 0.9743472495313,
5
+ "eval_loss": 0.5415592193603516,
6
+ "eval_precision": 0.974243301734386,
7
+ "eval_recall": 0.9744512195121952,
8
+ "eval_runtime": 1.948,
9
+ "eval_samples": 1431,
10
+ "eval_samples_per_second": 851.633,
11
+ "eval_steps_per_second": 3.593
12
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3351f608977c0896611d38dfcf41b569194b05050afad76bedb879625d120b1b
3
+ size 440316465
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988bc5a00281c6d210a5d34bd143d0363741a432fefe741bf71e61b1869d4314
3
+ size 810912
special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<s>NOTUSED",
4
+ "</s>NOTUSED"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "cls_token": "<s>",
8
+ "eos_token": "</s>",
9
+ "mask_token": {
10
+ "content": "<mask>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<pad>",
17
+ "sep_token": "</s>",
18
+ "unk_token": "<unk>"
19
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<s>NOTUSED",
4
+ "</s>NOTUSED"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "cls_token": "<s>",
8
+ "eos_token": "</s>",
9
+ "mask_token": {
10
+ "__type": "AddedToken",
11
+ "content": "<mask>",
12
+ "lstrip": true,
13
+ "normalized": true,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "model_max_length": 512,
18
+ "name_or_path": "almanach/camembert-base",
19
+ "pad_token": "<pad>",
20
+ "sep_token": "</s>",
21
+ "special_tokens_map_file": null,
22
+ "token": null,
23
+ "tokenizer_class": "CamembertTokenizer",
24
+ "unk_token": "<unk>"
25
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 39.95,
3
+ "train_loss": 1.9360494545527867,
4
+ "train_runtime": 526.0611,
5
+ "train_samples": 14928,
6
+ "train_samples_per_second": 1135.077,
7
+ "train_steps_per_second": 1.065
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9743472495313,
3
+ "best_model_checkpoint": "models/pos_final_mono_fr/checkpoint-560",
4
+ "epoch": 39.94915254237288,
5
+ "global_step": 560,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.95,
12
+ "eval_accuracy": 0.021484027736620635,
13
+ "eval_f1": 0.02014146604497732,
14
+ "eval_loss": 3.6696622371673584,
15
+ "eval_precision": 0.02098896013750248,
16
+ "eval_recall": 0.019359756097560975,
17
+ "eval_runtime": 1.991,
18
+ "eval_samples_per_second": 833.259,
19
+ "eval_steps_per_second": 3.516,
20
+ "step": 14
21
+ },
22
+ {
23
+ "epoch": 1.95,
24
+ "eval_accuracy": 0.051117169442304274,
25
+ "eval_f1": 0.049818939975858664,
26
+ "eval_loss": 3.6328794956207275,
27
+ "eval_precision": 0.051272950211351684,
28
+ "eval_recall": 0.048445121951219514,
29
+ "eval_runtime": 1.9795,
30
+ "eval_samples_per_second": 838.108,
31
+ "eval_steps_per_second": 3.536,
32
+ "step": 28
33
+ },
34
+ {
35
+ "epoch": 2.95,
36
+ "eval_accuracy": 0.12674094707520892,
37
+ "eval_f1": 0.11132299612354632,
38
+ "eval_loss": 3.5738770961761475,
39
+ "eval_precision": 0.11422247882986913,
40
+ "eval_recall": 0.1085670731707317,
41
+ "eval_runtime": 2.9806,
42
+ "eval_samples_per_second": 556.603,
43
+ "eval_steps_per_second": 2.349,
44
+ "step": 42
45
+ },
46
+ {
47
+ "epoch": 3.95,
48
+ "eval_accuracy": 0.30611035381971197,
49
+ "eval_f1": 0.22206610578982539,
50
+ "eval_loss": 3.4791259765625,
51
+ "eval_precision": 0.2535112084816713,
52
+ "eval_recall": 0.1975609756097561,
53
+ "eval_runtime": 1.9318,
54
+ "eval_samples_per_second": 858.799,
55
+ "eval_steps_per_second": 3.624,
56
+ "step": 56
57
+ },
58
+ {
59
+ "epoch": 4.95,
60
+ "eval_accuracy": 0.3788300835654596,
61
+ "eval_f1": 0.25393978707978787,
62
+ "eval_loss": 3.3377487659454346,
63
+ "eval_precision": 0.339298460283471,
64
+ "eval_recall": 0.20289634146341465,
65
+ "eval_runtime": 1.9526,
66
+ "eval_samples_per_second": 849.649,
67
+ "eval_steps_per_second": 3.585,
68
+ "step": 70
69
+ },
70
+ {
71
+ "epoch": 5.95,
72
+ "eval_accuracy": 0.34273691696793696,
73
+ "eval_f1": 0.20375216215017516,
74
+ "eval_loss": 3.188615560531616,
75
+ "eval_precision": 0.3736782170164308,
76
+ "eval_recall": 0.1400609756097561,
77
+ "eval_runtime": 1.9288,
78
+ "eval_samples_per_second": 860.111,
79
+ "eval_steps_per_second": 3.629,
80
+ "step": 84
81
+ },
82
+ {
83
+ "epoch": 6.95,
84
+ "eval_accuracy": 0.4599656255556214,
85
+ "eval_f1": 0.36921620863712845,
86
+ "eval_loss": 3.0504870414733887,
87
+ "eval_precision": 0.434243073878628,
88
+ "eval_recall": 0.3211280487804878,
89
+ "eval_runtime": 1.9835,
90
+ "eval_samples_per_second": 836.412,
91
+ "eval_steps_per_second": 3.529,
92
+ "step": 98
93
+ },
94
+ {
95
+ "epoch": 7.95,
96
+ "eval_accuracy": 0.5282403840455165,
97
+ "eval_f1": 0.4701918608510921,
98
+ "eval_loss": 2.8996212482452393,
99
+ "eval_precision": 0.5159915488853272,
100
+ "eval_recall": 0.431859756097561,
101
+ "eval_runtime": 2.2513,
102
+ "eval_samples_per_second": 736.924,
103
+ "eval_steps_per_second": 3.109,
104
+ "step": 112
105
+ },
106
+ {
107
+ "epoch": 8.95,
108
+ "eval_accuracy": 0.573164226871333,
109
+ "eval_f1": 0.5221832422289304,
110
+ "eval_loss": 2.748504161834717,
111
+ "eval_precision": 0.5617342460944357,
112
+ "eval_recall": 0.48783536585365855,
113
+ "eval_runtime": 1.9301,
114
+ "eval_samples_per_second": 859.535,
115
+ "eval_steps_per_second": 3.627,
116
+ "step": 126
117
+ },
118
+ {
119
+ "epoch": 9.95,
120
+ "eval_accuracy": 0.6246369940141053,
121
+ "eval_f1": 0.5703931402685649,
122
+ "eval_loss": 2.586193084716797,
123
+ "eval_precision": 0.6076525336091003,
124
+ "eval_recall": 0.5374390243902439,
125
+ "eval_runtime": 2.1049,
126
+ "eval_samples_per_second": 788.176,
127
+ "eval_steps_per_second": 3.326,
128
+ "step": 140
129
+ },
130
+ {
131
+ "epoch": 10.95,
132
+ "eval_accuracy": 0.6886742132400877,
133
+ "eval_f1": 0.6548560582094275,
134
+ "eval_loss": 2.420483112335205,
135
+ "eval_precision": 0.6804733727810651,
136
+ "eval_recall": 0.6310975609756098,
137
+ "eval_runtime": 2.1866,
138
+ "eval_samples_per_second": 758.715,
139
+ "eval_steps_per_second": 3.201,
140
+ "step": 154
141
+ },
142
+ {
143
+ "epoch": 11.95,
144
+ "eval_accuracy": 0.7838854975404492,
145
+ "eval_f1": 0.7690782646407386,
146
+ "eval_loss": 2.260331869125366,
147
+ "eval_precision": 0.7816327173125964,
148
+ "eval_recall": 0.7569207317073171,
149
+ "eval_runtime": 2.2785,
150
+ "eval_samples_per_second": 728.116,
151
+ "eval_steps_per_second": 3.072,
152
+ "step": 168
153
+ },
154
+ {
155
+ "epoch": 12.95,
156
+ "eval_accuracy": 0.83701772061874,
157
+ "eval_f1": 0.8335373317013463,
158
+ "eval_loss": 2.1123812198638916,
159
+ "eval_precision": 0.8366093366093366,
160
+ "eval_recall": 0.8304878048780487,
161
+ "eval_runtime": 2.9322,
162
+ "eval_samples_per_second": 565.792,
163
+ "eval_steps_per_second": 2.387,
164
+ "step": 182
165
+ },
166
+ {
167
+ "epoch": 13.95,
168
+ "eval_accuracy": 0.8735553843418479,
169
+ "eval_f1": 0.8685824105426924,
170
+ "eval_loss": 1.9825972318649292,
171
+ "eval_precision": 0.8690861363775105,
172
+ "eval_recall": 0.8680792682926829,
173
+ "eval_runtime": 1.9874,
174
+ "eval_samples_per_second": 834.748,
175
+ "eval_steps_per_second": 3.522,
176
+ "step": 196
177
+ },
178
+ {
179
+ "epoch": 14.95,
180
+ "eval_accuracy": 0.9239613583832158,
181
+ "eval_f1": 0.9204770765335692,
182
+ "eval_loss": 1.8721418380737305,
183
+ "eval_precision": 0.9209546481108466,
184
+ "eval_recall": 0.92,
185
+ "eval_runtime": 1.9558,
186
+ "eval_samples_per_second": 848.258,
187
+ "eval_steps_per_second": 3.579,
188
+ "step": 210
189
+ },
190
+ {
191
+ "epoch": 15.95,
192
+ "eval_accuracy": 0.9416819771232146,
193
+ "eval_f1": 0.9391052511241521,
194
+ "eval_loss": 1.7779291868209839,
195
+ "eval_precision": 0.9390336838896509,
196
+ "eval_recall": 0.9391768292682927,
197
+ "eval_runtime": 1.9975,
198
+ "eval_samples_per_second": 830.55,
199
+ "eval_steps_per_second": 3.504,
200
+ "step": 224
201
+ },
202
+ {
203
+ "epoch": 16.95,
204
+ "eval_accuracy": 0.9466010786463581,
205
+ "eval_f1": 0.944723771216138,
206
+ "eval_loss": 1.698561429977417,
207
+ "eval_precision": 0.9442346348297497,
208
+ "eval_recall": 0.9452134146341463,
209
+ "eval_runtime": 1.9516,
210
+ "eval_samples_per_second": 850.075,
211
+ "eval_steps_per_second": 3.587,
212
+ "step": 238
213
+ },
214
+ {
215
+ "epoch": 17.95,
216
+ "eval_accuracy": 0.9486161322823445,
217
+ "eval_f1": 0.9471599219892736,
218
+ "eval_loss": 1.6294448375701904,
219
+ "eval_precision": 0.9466983430799221,
220
+ "eval_recall": 0.9476219512195122,
221
+ "eval_runtime": 1.9621,
222
+ "eval_samples_per_second": 845.505,
223
+ "eval_steps_per_second": 3.568,
224
+ "step": 252
225
+ },
226
+ {
227
+ "epoch": 18.95,
228
+ "eval_accuracy": 0.9498607242339833,
229
+ "eval_f1": 0.9487042764210301,
230
+ "eval_loss": 1.5666829347610474,
231
+ "eval_precision": 0.948140929991778,
232
+ "eval_recall": 0.9492682926829268,
233
+ "eval_runtime": 2.1244,
234
+ "eval_samples_per_second": 780.914,
235
+ "eval_steps_per_second": 3.295,
236
+ "step": 266
237
+ },
238
+ {
239
+ "epoch": 19.95,
240
+ "eval_accuracy": 0.9523499081372607,
241
+ "eval_f1": 0.9514249592542383,
242
+ "eval_loss": 1.5073306560516357,
243
+ "eval_precision": 0.9506864326808925,
244
+ "eval_recall": 0.9521646341463414,
245
+ "eval_runtime": 1.9609,
246
+ "eval_samples_per_second": 846.058,
247
+ "eval_steps_per_second": 3.57,
248
+ "step": 280
249
+ },
250
+ {
251
+ "epoch": 20.95,
252
+ "eval_accuracy": 0.9551650565993006,
253
+ "eval_f1": 0.9544048870405071,
254
+ "eval_loss": 1.4499109983444214,
255
+ "eval_precision": 0.953780105349694,
256
+ "eval_recall": 0.9550304878048781,
257
+ "eval_runtime": 2.9847,
258
+ "eval_samples_per_second": 555.827,
259
+ "eval_steps_per_second": 2.345,
260
+ "step": 294
261
+ },
262
+ {
263
+ "epoch": 21.95,
264
+ "eval_accuracy": 0.9562911159841166,
265
+ "eval_f1": 0.9558884029925795,
266
+ "eval_loss": 1.3926490545272827,
267
+ "eval_precision": 0.9554662036613969,
268
+ "eval_recall": 0.9563109756097561,
269
+ "eval_runtime": 2.0934,
270
+ "eval_samples_per_second": 792.487,
271
+ "eval_steps_per_second": 3.344,
272
+ "step": 308
273
+ },
274
+ {
275
+ "epoch": 22.95,
276
+ "eval_accuracy": 0.9612102175072601,
277
+ "eval_f1": 0.961168007802975,
278
+ "eval_loss": 1.3373351097106934,
279
+ "eval_precision": 0.9609336908824964,
280
+ "eval_recall": 0.9614024390243903,
281
+ "eval_runtime": 2.5845,
282
+ "eval_samples_per_second": 641.892,
283
+ "eval_steps_per_second": 2.708,
284
+ "step": 322
285
+ },
286
+ {
287
+ "epoch": 23.95,
288
+ "eval_accuracy": 0.9622770106086648,
289
+ "eval_f1": 0.9623058515097475,
290
+ "eval_loss": 1.2815097570419312,
291
+ "eval_precision": 0.962203188343951,
292
+ "eval_recall": 0.9624085365853658,
293
+ "eval_runtime": 1.9491,
294
+ "eval_samples_per_second": 851.178,
295
+ "eval_steps_per_second": 3.591,
296
+ "step": 336
297
+ },
298
+ {
299
+ "epoch": 24.95,
300
+ "eval_accuracy": 0.9646180288034137,
301
+ "eval_f1": 0.9648307087214354,
302
+ "eval_loss": 1.2245593070983887,
303
+ "eval_precision": 0.9648748361130591,
304
+ "eval_recall": 0.9647865853658537,
305
+ "eval_runtime": 2.9881,
306
+ "eval_samples_per_second": 555.195,
307
+ "eval_steps_per_second": 2.343,
308
+ "step": 350
309
+ },
310
+ {
311
+ "epoch": 25.95,
312
+ "eval_accuracy": 0.9647661945119421,
313
+ "eval_f1": 0.9652270683110508,
314
+ "eval_loss": 1.16820228099823,
315
+ "eval_precision": 0.9652712138305333,
316
+ "eval_recall": 0.9651829268292683,
317
+ "eval_runtime": 2.9793,
318
+ "eval_samples_per_second": 556.84,
319
+ "eval_steps_per_second": 2.35,
320
+ "step": 364
321
+ },
322
+ {
323
+ "epoch": 26.95,
324
+ "eval_accuracy": 0.9660996858886979,
325
+ "eval_f1": 0.9654436860068261,
326
+ "eval_loss": 1.1113808155059814,
327
+ "eval_precision": 0.9649731968810916,
328
+ "eval_recall": 0.9659146341463415,
329
+ "eval_runtime": 2.0371,
330
+ "eval_samples_per_second": 814.377,
331
+ "eval_steps_per_second": 3.436,
332
+ "step": 378
333
+ },
334
+ {
335
+ "epoch": 27.95,
336
+ "eval_accuracy": 0.9699223611687311,
337
+ "eval_f1": 0.9672198601014949,
338
+ "eval_loss": 1.0521485805511475,
339
+ "eval_precision": 0.9669398823852037,
340
+ "eval_recall": 0.9675,
341
+ "eval_runtime": 2.1723,
342
+ "eval_samples_per_second": 763.722,
343
+ "eval_steps_per_second": 3.222,
344
+ "step": 392
345
+ },
346
+ {
347
+ "epoch": 28.95,
348
+ "eval_accuracy": 0.9706928228530789,
349
+ "eval_f1": 0.9678383074718775,
350
+ "eval_loss": 0.9949794411659241,
351
+ "eval_precision": 0.9677498018655124,
352
+ "eval_recall": 0.9679268292682927,
353
+ "eval_runtime": 2.9777,
354
+ "eval_samples_per_second": 557.141,
355
+ "eval_steps_per_second": 2.351,
356
+ "step": 406
357
+ },
358
+ {
359
+ "epoch": 29.95,
360
+ "eval_accuracy": 0.9716410833876608,
361
+ "eval_f1": 0.9688157293095565,
362
+ "eval_loss": 0.9363731741905212,
363
+ "eval_precision": 0.968668088997257,
364
+ "eval_recall": 0.9689634146341464,
365
+ "eval_runtime": 2.0063,
366
+ "eval_samples_per_second": 826.911,
367
+ "eval_steps_per_second": 3.489,
368
+ "step": 420
369
+ },
370
+ {
371
+ "epoch": 30.95,
372
+ "eval_accuracy": 0.9720559473715403,
373
+ "eval_f1": 0.9692110718205097,
374
+ "eval_loss": 0.8799633383750916,
375
+ "eval_precision": 0.9690929041697147,
376
+ "eval_recall": 0.969329268292683,
377
+ "eval_runtime": 1.9828,
378
+ "eval_samples_per_second": 836.683,
379
+ "eval_steps_per_second": 3.53,
380
+ "step": 434
381
+ },
382
+ {
383
+ "epoch": 31.95,
384
+ "eval_accuracy": 0.9726189770639483,
385
+ "eval_f1": 0.9695962936434156,
386
+ "eval_loss": 0.8233166337013245,
387
+ "eval_precision": 0.9693451564737788,
388
+ "eval_recall": 0.9698475609756098,
389
+ "eval_runtime": 1.9361,
390
+ "eval_samples_per_second": 856.891,
391
+ "eval_steps_per_second": 3.616,
392
+ "step": 448
393
+ },
394
+ {
395
+ "epoch": 32.95,
396
+ "eval_accuracy": 0.9733301724648847,
397
+ "eval_f1": 0.9703057833602635,
398
+ "eval_loss": 0.7679479122161865,
399
+ "eval_precision": 0.9702762026705689,
400
+ "eval_recall": 0.9703353658536585,
401
+ "eval_runtime": 1.9498,
402
+ "eval_samples_per_second": 850.85,
403
+ "eval_steps_per_second": 3.59,
404
+ "step": 462
405
+ },
406
+ {
407
+ "epoch": 33.95,
408
+ "eval_accuracy": 0.9737450364487643,
409
+ "eval_f1": 0.9711132452249204,
410
+ "eval_loss": 0.7146441340446472,
411
+ "eval_precision": 0.9710984421206671,
412
+ "eval_recall": 0.9711280487804878,
413
+ "eval_runtime": 1.9736,
414
+ "eval_samples_per_second": 840.614,
415
+ "eval_steps_per_second": 3.547,
416
+ "step": 476
417
+ },
418
+ {
419
+ "epoch": 34.95,
420
+ "eval_accuracy": 0.9749599952586974,
421
+ "eval_f1": 0.9722899646384587,
422
+ "eval_loss": 0.6641064286231995,
423
+ "eval_precision": 0.9721714216044867,
424
+ "eval_recall": 0.9724085365853659,
425
+ "eval_runtime": 1.9368,
426
+ "eval_samples_per_second": 856.569,
427
+ "eval_steps_per_second": 3.614,
428
+ "step": 490
429
+ },
430
+ {
431
+ "epoch": 35.68,
432
+ "learning_rate": 5e-05,
433
+ "loss": 2.0937,
434
+ "step": 500
435
+ },
436
+ {
437
+ "epoch": 35.95,
438
+ "eval_accuracy": 0.9755230249511053,
439
+ "eval_f1": 0.9729268292682927,
440
+ "eval_loss": 0.6186906099319458,
441
+ "eval_precision": 0.9729268292682927,
442
+ "eval_recall": 0.9729268292682927,
443
+ "eval_runtime": 1.993,
444
+ "eval_samples_per_second": 832.399,
445
+ "eval_steps_per_second": 3.512,
446
+ "step": 504
447
+ },
448
+ {
449
+ "epoch": 36.95,
450
+ "eval_accuracy": 0.9756119243762224,
451
+ "eval_f1": 0.9729490833168234,
452
+ "eval_loss": 0.5833659172058105,
453
+ "eval_precision": 0.9726970777341012,
454
+ "eval_recall": 0.9732012195121951,
455
+ "eval_runtime": 2.9665,
456
+ "eval_samples_per_second": 559.252,
457
+ "eval_steps_per_second": 2.36,
458
+ "step": 518
459
+ },
460
+ {
461
+ "epoch": 37.95,
462
+ "eval_accuracy": 0.9761749540686303,
463
+ "eval_f1": 0.9736946383393786,
464
+ "eval_loss": 0.5605461597442627,
465
+ "eval_precision": 0.97348692631194,
466
+ "eval_recall": 0.9739024390243902,
467
+ "eval_runtime": 2.0134,
468
+ "eval_samples_per_second": 823.972,
469
+ "eval_steps_per_second": 3.477,
470
+ "step": 532
471
+ },
472
+ {
473
+ "epoch": 38.95,
474
+ "eval_accuracy": 0.9764712854856872,
475
+ "eval_f1": 0.9739244403127238,
476
+ "eval_loss": 0.5465701222419739,
477
+ "eval_precision": 0.9736721821007405,
478
+ "eval_recall": 0.9741768292682926,
479
+ "eval_runtime": 2.9641,
480
+ "eval_samples_per_second": 559.689,
481
+ "eval_steps_per_second": 2.362,
482
+ "step": 546
483
+ },
484
+ {
485
+ "epoch": 39.95,
486
+ "eval_accuracy": 0.9768268831861554,
487
+ "eval_f1": 0.9743472495313,
488
+ "eval_loss": 0.5415592193603516,
489
+ "eval_precision": 0.974243301734386,
490
+ "eval_recall": 0.9744512195121952,
491
+ "eval_runtime": 1.9918,
492
+ "eval_samples_per_second": 832.894,
493
+ "eval_steps_per_second": 3.514,
494
+ "step": 560
495
+ },
496
+ {
497
+ "epoch": 39.95,
498
+ "step": 560,
499
+ "total_flos": 3.723450094214784e+16,
500
+ "train_loss": 1.9360494545527867,
501
+ "train_runtime": 526.0611,
502
+ "train_samples_per_second": 1135.077,
503
+ "train_steps_per_second": 1.065
504
+ }
505
+ ],
506
+ "max_steps": 560,
507
+ "num_train_epochs": 40,
508
+ "total_flos": 3.723450094214784e+16,
509
+ "trial_name": null,
510
+ "trial_params": null
511
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4c3bc0bf649b8aee94ec3886118cfcb6f816ebb22141d51777c8d76e625b62c
3
+ size 3439