File size: 5,205 Bytes
3b2607f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pos_final_xlm_fr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pos_final_xlm_fr

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1022
- Precision: 0.9744
- Recall: 0.9746
- F1: 0.9745
- Accuracy: 0.9769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.95  | 14   | 3.5537          | 0.0       | 0.0    | 0.0    | 0.0026   |
| No log        | 1.95  | 28   | 3.4536          | 0.0153    | 0.0024 | 0.0042 | 0.0049   |
| No log        | 2.95  | 42   | 3.1247          | 0.2395    | 0.1816 | 0.2066 | 0.2843   |
| No log        | 3.95  | 56   | 2.5988          | 0.4342    | 0.3539 | 0.3900 | 0.4543   |
| No log        | 4.95  | 70   | 2.0168          | 0.5125    | 0.4086 | 0.4547 | 0.5148   |
| No log        | 5.95  | 84   | 1.4838          | 0.5959    | 0.5180 | 0.5543 | 0.6086   |
| No log        | 6.95  | 98   | 0.9300          | 0.7905    | 0.7619 | 0.7759 | 0.7981   |
| No log        | 7.95  | 112  | 0.4874          | 0.9111    | 0.9078 | 0.9094 | 0.9147   |
| No log        | 8.95  | 126  | 0.2940          | 0.9372    | 0.9368 | 0.9370 | 0.9396   |
| No log        | 9.95  | 140  | 0.2086          | 0.9471    | 0.9482 | 0.9476 | 0.9490   |
| No log        | 10.95 | 154  | 0.1688          | 0.9594    | 0.9610 | 0.9602 | 0.9627   |
| No log        | 11.95 | 168  | 0.1450          | 0.9624    | 0.9641 | 0.9632 | 0.9659   |
| No log        | 12.95 | 182  | 0.1334          | 0.9651    | 0.9669 | 0.9660 | 0.9686   |
| No log        | 13.95 | 196  | 0.1213          | 0.9674    | 0.9685 | 0.9679 | 0.9702   |
| No log        | 14.95 | 210  | 0.1155          | 0.9684    | 0.9696 | 0.9690 | 0.9718   |
| No log        | 15.95 | 224  | 0.1093          | 0.9707    | 0.9712 | 0.9709 | 0.9734   |
| No log        | 16.95 | 238  | 0.1059          | 0.9710    | 0.9716 | 0.9713 | 0.9739   |
| No log        | 17.95 | 252  | 0.1046          | 0.9711    | 0.9716 | 0.9714 | 0.9740   |
| No log        | 18.95 | 266  | 0.1014          | 0.9719    | 0.9724 | 0.9722 | 0.9745   |
| No log        | 19.95 | 280  | 0.1003          | 0.9715    | 0.9722 | 0.9718 | 0.9742   |
| No log        | 20.95 | 294  | 0.0987          | 0.9724    | 0.9730 | 0.9727 | 0.9751   |
| No log        | 21.95 | 308  | 0.0971          | 0.9722    | 0.9728 | 0.9725 | 0.9750   |
| No log        | 22.95 | 322  | 0.0968          | 0.9724    | 0.9735 | 0.9730 | 0.9754   |
| No log        | 23.95 | 336  | 0.0954          | 0.9728    | 0.9736 | 0.9732 | 0.9756   |
| No log        | 24.95 | 350  | 0.0967          | 0.9722    | 0.9731 | 0.9727 | 0.9752   |
| No log        | 25.95 | 364  | 0.0965          | 0.9735    | 0.9744 | 0.9739 | 0.9763   |
| No log        | 26.95 | 378  | 0.0963          | 0.9725    | 0.9735 | 0.9730 | 0.9757   |
| No log        | 27.95 | 392  | 0.0972          | 0.9728    | 0.9738 | 0.9733 | 0.9759   |
| No log        | 28.95 | 406  | 0.0987          | 0.9736    | 0.9745 | 0.9740 | 0.9766   |
| No log        | 29.95 | 420  | 0.0994          | 0.9737    | 0.9742 | 0.9740 | 0.9764   |
| No log        | 30.95 | 434  | 0.0985          | 0.9737    | 0.9741 | 0.9739 | 0.9764   |
| No log        | 31.95 | 448  | 0.1022          | 0.9744    | 0.9746 | 0.9745 | 0.9769   |
| No log        | 32.95 | 462  | 0.1020          | 0.9740    | 0.9744 | 0.9742 | 0.9767   |
| No log        | 33.95 | 476  | 0.1055          | 0.9730    | 0.9738 | 0.9734 | 0.9758   |
| No log        | 34.95 | 490  | 0.1068          | 0.9732    | 0.9742 | 0.9737 | 0.9760   |
| 0.6768        | 35.95 | 504  | 0.1085          | 0.9737    | 0.9740 | 0.9739 | 0.9764   |
| 0.6768        | 36.95 | 518  | 0.1088          | 0.9735    | 0.9743 | 0.9739 | 0.9764   |
| 0.6768        | 37.95 | 532  | 0.1100          | 0.9739    | 0.9744 | 0.9742 | 0.9768   |
| 0.6768        | 38.95 | 546  | 0.1107          | 0.9739    | 0.9745 | 0.9742 | 0.9767   |
| 0.6768        | 39.95 | 560  | 0.1115          | 0.9740    | 0.9747 | 0.9744 | 0.9769   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.12.0
- Datasets 2.18.0
- Tokenizers 0.13.2