prashanthgowni
commited on
Commit
•
6f329c8
1
Parent(s):
3fcb282
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 277.82 +/- 22.28
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ebac16a7010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ebac16a70a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ebac16a7130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ebac16a71c0>", "_build": "<function ActorCriticPolicy._build at 0x7ebac16a7250>", "forward": "<function ActorCriticPolicy.forward at 0x7ebac16a72e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ebac16a7370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ebac16a7400>", "_predict": "<function ActorCriticPolicy._predict at 0x7ebac16a7490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ebac16a7520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ebac16a75b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ebac16a7640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ebac168fa00>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689936676753879069, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBcvL17Rqi6+Bz5OEn/+DM1NQu5jr4OuAAAgD8AAIA/gJszPa4LnLo4UtC7K5l7PKOPDLyAlFs9AACAPwAAgD9NvGg9KZhmumOH6zkAW1e2B76Vup7OCbkAAIA/AACAP4Bdar3syae5X7mruzwL67a/VyI6xJLHOgAAgD8AAIA/MxZAva5BnLr2HUE7vyCBN0svLjm0CRu6AACAPwAAgD8maTM+OCHtu469gDoD/A24z+xMvU2pmrkAAIA/AACAP4jskb6Ewqs+CWu9PgVqdL4SzvG8bnemPQAAAAAAAAAAmh5yvVzrWbp8ejA5qXQ5NHF1MLmAeE+4AACAPwAAgD+a67m8XINhuu7iVTsmqSs25q0ouZrleroAAIA/AACAP21BID7XSAg/uo7VvRIFvL5IcUc93TxlvQAAAAAAAAAAc2yPPcOROrp4HNq58XYBtpO9wznK4Pw4AACAPwAAgD+aZ5K9XP9suh0GV7pDWZG1FS0rOxK3BDUAAIA/AACAP5oMqzwUxKO68biEu8t8cjj//Su55rdZOQAAgD8AAIA/mqU+PRQugrqeJtY7TXTaOMblGTv+aX26AACAPwAAgD/z0YY9wwEZujKKnTtpLWA4jslMO/eqJ7gAAIA/AACAP5qZoji4Btm521FDOVDTZ7YqRYg6LmNfuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNqTP0I1LuMAWyUTegDjAF0lEdAkEQFAeJYT3V9lChoBkdAZWcNe+mFamgHTegDaAhHQJBFmQvHtF91fZQoaAZHQGaIBDG96C1oB03oA2gIR0CQRzO45Lh8dX2UKGgGR0BTjCONo8ISaAdL4mgIR0CQUFkgwGnodX2UKGgGR0BjTL+vQnhLaAdN6ANoCEdAkF4XZbpu/HV9lChoBkdAZCKhouf29WgHTegDaAhHQJBgUo5PuXx1fZQoaAZHQGlNySV4X41oB03oA2gIR0CQYLrv9cbBdX2UKGgGR0Bn6zMLWqcWaAdN6ANoCEdAkGDSbtqpLnV9lChoBkdAZDmrBCUormgHTegDaAhHQJBjqQxN7Bx1fZQoaAZHQGh2GyHEdeZoB03oA2gIR0CQfz8Gs3hodX2UKGgGR0Bbsa1og3cYaAdN6ANoCEdAkH+hpcophHV9lChoBkdAaCRmcvugH2gHTegDaAhHQJB/8WLxZuB1fZQoaAZHQGgB2JJoTPBoB03oA2gIR0CQgpgK4QSSdX2UKGgGR0BqNKKFZgXuaAdN6ANoCEdAkIZ7GvOhTXV9lChoBkdAYkybIcR15mgHTegDaAhHQJCIvfwZwXJ1fZQoaAZHQGVjMo2GZeBoB03oA2gIR0CQjIJSiudPdX2UKGgGR0BleJiTdLxqaAdN6ANoCEdAkI0bBj4Ho3V9lChoBkdAZ470th/iHmgHTegDaAhHQJCRby4FzMl1fZQoaAZHQF/lw/PgNw1oB03oA2gIR0CQk4pqASWadX2UKGgGR0Bk1ZMzuWrwaAdN6ANoCEdAkJ8gMUh3aHV9lChoBkdAZk1g62fCh2gHTegDaAhHQJCrrNLUTct1fZQoaAZHQGEz10Lc9GJoB03oA2gIR0CQrWmFJxvOdX2UKGgGR0BlvyQNkOI7aAdN6ANoCEdAkK2wIppeu3V9lChoBkdAZcL7b+Lm62gHTegDaAhHQJCtvnSv1UV1fZQoaAZHQGIaVinYQJ5oB03oA2gIR0CQr7XYUWVNdX2UKGgGR0BpVUP8Q7LdaAdN6ANoCEdAkMgqTbFju3V9lChoBkdAZEm4lyBClmgHTegDaAhHQJDIoNI9TxZ1fZQoaAZHQGVkl0o0ALloB03oA2gIR0CQyQDlYEGJdX2UKGgGR0Bm0fL5hz/7aAdN6ANoCEdAkMw1YU34sXV9lChoBkdAYOhi4J/oaGgHTegDaAhHQJDRbLmp2ll1fZQoaAZHQGWUVD0Dlo1oB03oA2gIR0CQ05JRfnfVdX2UKGgGR0BQGv0Zm7J5aAdLzWgIR0CQ1SSh8IAwdX2UKGgGR0Bof6cEvCdjaAdN6ANoCEdAkNc7EgntwHV9lChoBkdAZzhAC4jKPmgHTegDaAhHQJDXytFKCg91fZQoaAZHQGQTCT+vQnhoB03oA2gIR0CQ26xXnyNGdX2UKGgGR0BldPqiXY16aAdN6ANoCEdAkN1Kab4Ju3V9lChoBkdAby6QMhHLBGgHTVUCaAhHQJDeaGvfTCt1fZQoaAZHQGTAH003wTdoB03oA2gIR0CQ5NxagVXWdX2UKGgGR0BjuEeyRjjJaAdN6ANoCEdAkPGddzGPxXV9lChoBkdAYPMaJAMUh2gHTegDaAhHQJDzdd2PkrB1fZQoaAZHQGNUZqVQhwFoB03oA2gIR0CQ878h9srNdX2UKGgGR0BjY8NQTEiuaAdN6ANoCEdAkPXcoc7yQXV9lChoBkdAY08o3rD632gHTegDaAhHQJER8JWvKU51fZQoaAZHQGePIJZ4fOloB03oA2gIR0CRElWpZOi4dX2UKGgGR0BpEqGDcuanaAdN6ANoCEdAkRWd0eU6gnV9lChoBkdAbpk6cRUWEmgHTQkBaAhHQJEZDGDL8rJ1fZQoaAZHQGY+/kNnXd1oB03oA2gIR0CRGjiNsFdLdX2UKGgGR0BiuGRmseXBaAdN6ANoCEdAkRzP4EfT1HV9lChoBkdAYIFAfuCwr2gHTegDaAhHQJEetrVOKwZ1fZQoaAZHQGLUFPrOZ9doB03oA2gIR0CRITkiliz+dX2UKGgGR0Bk9GdkJ8fFaAdN6ANoCEdAkSHwJ9iMHnV9lChoBkdAbrF1schkiGgHTT8CaAhHQJEmp8E3bVV1fZQoaAZHQGT4x8c+7lJoB03oA2gIR0CRJrbKifxudX2UKGgGR0BlFzkjopx4aAdN6ANoCEdAkSiac7Qsw3V9lChoBkdAYrY0dBBzFWgHTegDaAhHQJEp2OS4e911fZQoaAZHQGU/Hs9jgAJoB03oA2gIR0CRM3O1fE4vdX2UKGgGR0BI8uRcNYr8aAdL0WgIR0CRQPsHSncddX2UKGgGR0BgY2ois4kvaAdN6ANoCEdAkUP/XsgMdHV9lChoBkdAZ03GACnxa2gHTegDaAhHQJFESGO+7Dl1fZQoaAZHQGkytuk1uR9oB03oA2gIR0CRX9naWX1KdX2UKGgGR0Bi2X/o7muDaAdN6ANoCEdAkWBf1QIldHV9lChoBkdAailQgLZzxWgHTegDaAhHQJFk0T238XN1fZQoaAZHQGQae98JD3NoB03oA2gIR0CRaTwYLsrvdX2UKGgGR0Bk1rT+ee4DaAdN6ANoCEdAkWrAxFiKBXV9lChoBkdAZauvpQk5ZWgHTegDaAhHQJFtBBBzFMt1fZQoaAZHQGdEigbp/w1oB03oA2gIR0CRbrU+s5n2dX2UKGgGR0BiAPBtUGVzaAdN6ANoCEdAkXD9US7GvXV9lChoBkdAaQMhHskY42gHTegDaAhHQJFxkth/iHZ1fZQoaAZHQGSFLnDBMzxoB03oA2gIR0CRdbbx3FDOdX2UKGgGR0Bbgun62v0RaAdN6ANoCEdAkXXDLfUF0XV9lChoBkdAZG+t9x6v7mgHTegDaAhHQJF3Sguh9LJ1fZQoaAZHQGbnCSRr8BNoB03oA2gIR0CReF1ZTyavdX2UKGgGR0Bs5AIfKZDzaAdNmwNoCEdAkYoJOzposnV9lChoBkdAaaS51eSjg2gHTegDaAhHQJGLWGoJiRZ1fZQoaAZHQGh+UEHMUypoB03oA2gIR0CRjmvugHu7dX2UKGgGR0BwywPe54GEaAdNjQJoCEdAkZWL1mJ3xHV9lChoBkdAZd8CCBf8dmgHTegDaAhHQJGtcTg2qDN1fZQoaAZHQGceEMTewcJoB03oA2gIR0CRrctUXHindX2UKGgGR0BwOJAt4A0baAdNjwNoCEdAka8gFs54nnV9lChoBkdAZ8UKLKmsNmgHTegDaAhHQJGwuNEPUa11fZQoaAZHQGDVQNTcZcdoB03oA2gIR0CRtM1eBxxUdX2UKGgGR0BxJpuGbkOqaAdNVQFoCEdAkbVypvP1MHV9lChoBkdAZz/sIE8q4GgHTegDaAhHQJG3AtPHktF1fZQoaAZHQG/T/BN21UloB02iA2gIR0CRt0yFPBSDdX2UKGgGR0BjKhGUfPonaAdN6ANoCEdAkbieYMOPNnV9lChoBkdAYK5pnpSrHWgHTegDaAhHQJG/qPfbblB1fZQoaAZHQGXVeIuXeFdoB03oA2gIR0CRv7kvboKVdX2UKGgGR0Bjuz4BV+7UaAdN6ANoCEdAkcFrbQC0W3V9lChoBkdAZZpf9gnc+WgHTegDaAhHQJHClGRV6u51fZQoaAZHQHCVsQVbiZRoB00XAWgIR0CRwtClabF1dX2UKGgGR0Byosm2LHdXaAdN3AFoCEdAkcVQ8wHqvHV9lChoBkdAc0VHIIWxhWgHTVwBaAhHQJHGvdadMCd1fZQoaAZHQEEsCbMHKOloB0u9aAhHQJHJmG34Kx91fZQoaAZHQHIROJpFkQRoB0v+aAhHQJHQf2criER1fZQoaAZHQHMJ+ZTho/RoB02rAmgIR0CR0yYAbQ1KdX2UKGgGR0BxlOAOJ+DwaAdNfgJoCEdAkdO9BWxQi3V9lChoBkdAZIYWpIczZmgHTegDaAhHQJHVleb/ffp1fZQoaAZHQGEOMSsbNr1oB03oA2gIR0CR1pB5X2dvdX2UKGgGR0BDbu5jH4oJaAdLumgIR0CR3H1QZXMhdX2UKGgGR0BiXmFajesQaAdN6ANoCEdAkd5uhPCVKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f941e44a440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f941e44a4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f941e44a560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f941e44a5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f941e44a680>", "forward": "<function ActorCriticPolicy.forward at 0x7f941e44a710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f941e44a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f941e44a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f941e44a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f941e44a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f941e44a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f941e44aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94274f96c0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689945936962641975, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABhAkL4m5gw/B1uZPfmN6r7NTnC+mBXyPAAAAAAAAAAAmqO6vNGoqz5Kx5U9InHOvljsXjxN7zc8AAAAAAAAAACa5Qu8hZOHuarFRrk/W520ygONO35OaDgAAIA/AACAP5trlr583RY/jabBPtRn176I5km+Oy2kPgAAAAAAAAAAmuKuvSdgTT8cGKG9tu4Tv7Hdn73giLs8AAAAAAAAAACm6LK94dSCusm1HLj27OK2/LVfuj2+LjcAAIA/AAAAAM3n/z2jHgY/xqlRvQ1t1r5PjKY9wslWvQAAAAAAAAAA2qL3PWQKGT7SUqa+HCyRvjEH4L2AFvM7AAAAAAAAAADNjZS+o3xdP4QiML4qhxi/BAupvlun4DwAAAAAAAAAAGa1FL1biJE+V3+tPH/bnb74iRu9r4cUugAAAAAAAAAATQd1PQ93oT+sRwA/Lwcwv0N23Ty1i1s+AAAAAAAAAACNbNE9vqWnPY4Xbb4aUWm+PUeyvZamUbsAAAAAAAAAAGYQjbxc41K6gwdWuuS2i7Yry5a68u18OQAAgD8AAIA/AH3vPOlzBLw/hru7IAU7PCAwT73SHMe9AACAPwAAgD8A1HE80sfMPFSczL2WzIG+QEE9vYrtlLwAAAAAAAAAADM60TyJay8958ssvtN7gb5Mfje9O4TbPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMmylN1yNqMAWyUS+GMAXSUR0C0CGkauOjqdX2UKGgGR0BzB7/95yEMaAdLzGgIR0C0CJyT+vQodX2UKGgGR0BwrDWz4UN8aAdL4GgIR0C0CKXvH93sdX2UKGgGR0Bzht3u/k/9aAdNDwFoCEdAtAixpUPxx3V9lChoBkdAcDrjSG8Em2gHS9VoCEdAtAjxqesgdXV9lChoBkdAcuFKODJ2dWgHS9FoCEdAtAj0IUrTY3V9lChoBkdAbWsu7HyVfWgHS+doCEdAtAj6LQ5WBHV9lChoBkdAcjLrMkhRqGgHS9BoCEdAtAkDyc0+DHV9lChoBkdAR5FLOAy2yGgHS4JoCEdAtAkR1GLDRHV9lChoBkdAcpmjCHh0hmgHS/1oCEdAtAkjxYq5LHV9lChoBkdAcy7YR/ViF2gHS/RoCEdAtAklO8Cgb3V9lChoBkdAc1HSVW0Z32gHS85oCEdAtAlBu0kWynV9lChoBkdAcJJFTefqYGgHS+hoCEdAtAmFrk8zRHV9lChoBkdAcY5PBBRht2gHS/loCEdAtAmEJZ4fOnV9lChoBkdAcR/WIoE0SGgHS+5oCEdAtAmKbwz+FXV9lChoBkdAczhbedkJ8mgHS9JoCEdAtAmKJvYOD3V9lChoBkdAcnfqhDgIhWgHTQcBaAhHQLQJueTV2A51fZQoaAZHQHFNnJgb6xhoB0vjaAhHQLQJ3SSeRPp1fZQoaAZHQHDKWphnanJoB0vGaAhHQLQKB2OyVwB1fZQoaAZHQHOQTu8brC5oB00gAWgIR0C0Ci5xNqQBdX2UKGgGR0BzbKfwqiGnaAdL5mgIR0C0CjUrGza9dX2UKGgGR0BzFKElE7W/aAdNHQFoCEdAtApBaX8fm3V9lChoBkdAcrcSAH3UQWgHS/NoCEdAtApPl8w6AHV9lChoBkdAcKtKgZjx1GgHS8hoCEdAtApe5oXbd3V9lChoBkdAcemq5LAYYWgHS+VoCEdAtApo1O0sv3V9lChoBkdAcuH0AcT8HmgHS/1oCEdAtApo4ffXPXV9lChoBkdAceL3cpLEk2gHS/1oCEdAtAp1vQ4S6HV9lChoBkdAcVIaYNRWLmgHTRoBaAhHQLQKsq9Gqgh1fZQoaAZHQHCgUnb7CSBoB0vcaAhHQLQKwadtl7N1fZQoaAZHQHCAU2P1ct5oB0vnaAhHQLQK0DdP+GZ1fZQoaAZHQHHrqPKdQO5oB0v0aAhHQLQK6QjD8+B1fZQoaAZHQHNLapT/ACZoB0v1aAhHQLQK6jNIK+l1fZQoaAZHQHDQNDtw71ZoB0vJaAhHQLQLA8W9DhN1fZQoaAZHQHAIPRiPQv9oB0vmaAhHQLQQBx2St/51fZQoaAZHQHHyykwevIRoB0vmaAhHQLQQMZZB9kV1fZQoaAZHQHHwkyxiXppoB0viaAhHQLQQMr5IpYt1fZQoaAZHQG4t7LlmvntoB0vkaAhHQLQQQ1Oj7AN1fZQoaAZHQHIfOb3Gn4xoB0vSaAhHQLQQRn4wh4d1fZQoaAZHQHCiI8ZDRdBoB0vXaAhHQLQQV2AXl8x1fZQoaAZHQHBWvH93r2RoB0vxaAhHQLQQZh5gPVd1fZQoaAZHQHNPDC1qnFZoB0vZaAhHQLQQaUVzp5h1fZQoaAZHQHIdOavzOHFoB0vpaAhHQLQQcQcxTKl1fZQoaAZHQHOUi3G4qgBoB0vbaAhHQLQQshjOLR91fZQoaAZHQG8AeuV5a/1oB0v0aAhHQLQQyjZ+QU51fZQoaAZHQHLM216Vt41oB0vhaAhHQLQQy1UlzEJ1fZQoaAZHQC5q15Sm65JoB0tlaAhHQLQQ6HaN+9d1fZQoaAZHQHOhakdmxt5oB0voaAhHQLQQ8Bj4Hop1fZQoaAZHQHHiyXlbNbFoB0v/aAhHQLQREW/JvHd1fZQoaAZHQHARUY8+zMRoB0vNaAhHQLQRNHzYmLN1fZQoaAZHQHOyyDdxhlVoB00XAWgIR0C0EUzIBBAwdX2UKGgGR0BylfcIqsltaAdL02gIR0C0EWO801qGdX2UKGgGR0BOkjAaef7KaAdLh2gIR0C0EXeFL39KdX2UKGgGR0BzhTtZ3cHoaAdL6mgIR0C0EYXeaa1DdX2UKGgGR0Bya8ETxoZiaAdLy2gIR0C0EZVuzhP1dX2UKGgGR0BwdC0a6z3RaAdL4GgIR0C0Eadph4MXdX2UKGgGR0Byt1WOp84QaAdL/2gIR0C0EbKKHfuUdX2UKGgGR0By5t4LThHcaAdNVgJoCEdAtBHQ4ZMtb3V9lChoBkdAcPD0DU3GXGgHS+BoCEdAtBISD5CWvHV9lChoBkdAbzwWiUPhAGgHS9NoCEdAtBIcA+6iCnV9lChoBkdAbf6qWC2+f2gHS+poCEdAtBJFKcurZXV9lChoBkdAcFIuHvc8DGgHTQcBaAhHQLQSSxSpBHF1fZQoaAZHQHBXZR4yGi5oB0vcaAhHQLQSUxcE/0N1fZQoaAZHQHBrphvze41oB01xAWgIR0C0El4Vh1DCdX2UKGgGR0Bvv23OObRXaAdLzmgIR0C0EnnZbpu/dX2UKGgGR0ByiUZZSvTxaAdL7mgIR0C0Eo7BbfP5dX2UKGgGR0Byg1vZRKpUaAdL2GgIR0C0Ep1CswL3dX2UKGgGR0Buv6TINmUXaAdL3WgIR0C0ErcE3bVSdX2UKGgGR0BwpIjbBXS0aAdLymgIR0C0Esr3XZoPdX2UKGgGR0BzeqpuMuOCaAdLzGgIR0C0EtgN5MURdX2UKGgGR0BxFx/I8yN5aAdL8GgIR0C0Et/Ot4iYdX2UKGgGR0ByGTF+/gzhaAdL62gIR0C0EyORgZ0kdX2UKGgGR0ByBtwiqyWzaAdNMwFoCEdAtBNP/io86nV9lChoBkdAczBeKbayr2gHS9toCEdAtBNUfxMFlnV9lChoBkdAca+C4jKPn2gHS8NoCEdAtBNZ26kIonV9lChoBkdAcrl+L3sXzmgHS89oCEdAtBNwunMt9XV9lChoBkdAb+51h9b5dmgHS9JoCEdAtBOIqtozvnV9lChoBkdAcbTGViWmg2gHS+VoCEdAtBOX6zmfXnV9lChoBkdAcvuXyRSxaGgHTREBaAhHQLQTl8ma6SV1fZQoaAZHQHMaBhpg1FZoB0vvaAhHQLQTzElVtGd1fZQoaAZHQHG4YbCJoCdoB0voaAhHQLQT2EKE3851fZQoaAZHQHIa/tpmEoRoB0vDaAhHQLQT8Qr+YMR1fZQoaAZHQG9lDZDiOvNoB0vOaAhHQLQT8sUIsy11fZQoaAZHQHDeKPbO/tZoB0vbaAhHQLQT8T72tdR1fZQoaAZHQHJraAWi1zBoB0v/aAhHQLQUCPdl/Yt1fZQoaAZHQHFY07GNrCZoB0vpaAhHQLQUKxjriVB1fZQoaAZHQG8gPUBnzxxoB0vpaAhHQLQUc83uNPx1fZQoaAZHQG+XJe/pMYdoB0vOaAhHQLQUfFEiMYN1fZQoaAZHQHCDU0elsP9oB0vlaAhHQLQUp2OhkAh1fZQoaAZHQHOSMfzSThZoB0vYaAhHQLQU29MsYl91fZQoaAZHQHFuCIpH7P9oB0veaAhHQLQU6XQMQVd1fZQoaAZHQFSdlijL0SRoB0u9aAhHQLQU8jgydnV1fZQoaAZHQHBUdLL6k69oB0vwaAhHQLQU9W5paid1fZQoaAZHQG/stQTEit9oB00eAWgIR0C0FQBIOH32dX2UKGgGR0Bxr6hZha1UaAdNKAFoCEdAtBUvd1uBMHV9lChoBkdAcAmUtqYZ22gHS9doCEdAtBU9V81Gb3V9lChoBkdAcJjHY6GQCGgHS+hoCEdAtBU9nVXmvHV9lChoBkdAcg3jS5RTCWgHS9ZoCEdAtBVSTmnwX3V9lChoBkdAb8x99+gDimgHS+xoCEdAtBVYQwsXi3V9lChoBkdAcz6GrCFbmmgHS/hoCEdAtBVomgJ1JXV9lChoBkdAc6ReBQN1AGgHS/toCEdAtBWn67/XG3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0bb33ac61d51824b15c8b1442313b7402bb9dac01fefd8ecc70d210d790915c
|
3 |
+
size 146641
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f941e44a440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f941e44a4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f941e44a560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f941e44a5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f941e44a680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f941e44a710>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f941e44a7a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f941e44a830>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f941e44a8c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f941e44a950>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f941e44a9e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f941e44aa70>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f94274f96c0>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1689945936962641975,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABhAkL4m5gw/B1uZPfmN6r7NTnC+mBXyPAAAAAAAAAAAmqO6vNGoqz5Kx5U9InHOvljsXjxN7zc8AAAAAAAAAACa5Qu8hZOHuarFRrk/W520ygONO35OaDgAAIA/AACAP5trlr583RY/jabBPtRn176I5km+Oy2kPgAAAAAAAAAAmuKuvSdgTT8cGKG9tu4Tv7Hdn73giLs8AAAAAAAAAACm6LK94dSCusm1HLj27OK2/LVfuj2+LjcAAIA/AAAAAM3n/z2jHgY/xqlRvQ1t1r5PjKY9wslWvQAAAAAAAAAA2qL3PWQKGT7SUqa+HCyRvjEH4L2AFvM7AAAAAAAAAADNjZS+o3xdP4QiML4qhxi/BAupvlun4DwAAAAAAAAAAGa1FL1biJE+V3+tPH/bnb74iRu9r4cUugAAAAAAAAAATQd1PQ93oT+sRwA/Lwcwv0N23Ty1i1s+AAAAAAAAAACNbNE9vqWnPY4Xbb4aUWm+PUeyvZamUbsAAAAAAAAAAGYQjbxc41K6gwdWuuS2i7Yry5a68u18OQAAgD8AAIA/AH3vPOlzBLw/hru7IAU7PCAwT73SHMe9AACAPwAAgD8A1HE80sfMPFSczL2WzIG+QEE9vYrtlLwAAAAAAAAAADM60TyJay8958ssvtN7gb5Mfje9O4TbPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMmylN1yNqMAWyUS+GMAXSUR0C0CGkauOjqdX2UKGgGR0BzB7/95yEMaAdLzGgIR0C0CJyT+vQodX2UKGgGR0BwrDWz4UN8aAdL4GgIR0C0CKXvH93sdX2UKGgGR0Bzht3u/k/9aAdNDwFoCEdAtAixpUPxx3V9lChoBkdAcDrjSG8Em2gHS9VoCEdAtAjxqesgdXV9lChoBkdAcuFKODJ2dWgHS9FoCEdAtAj0IUrTY3V9lChoBkdAbWsu7HyVfWgHS+doCEdAtAj6LQ5WBHV9lChoBkdAcjLrMkhRqGgHS9BoCEdAtAkDyc0+DHV9lChoBkdAR5FLOAy2yGgHS4JoCEdAtAkR1GLDRHV9lChoBkdAcpmjCHh0hmgHS/1oCEdAtAkjxYq5LHV9lChoBkdAcy7YR/ViF2gHS/RoCEdAtAklO8Cgb3V9lChoBkdAc1HSVW0Z32gHS85oCEdAtAlBu0kWynV9lChoBkdAcJJFTefqYGgHS+hoCEdAtAmFrk8zRHV9lChoBkdAcY5PBBRht2gHS/loCEdAtAmEJZ4fOnV9lChoBkdAcR/WIoE0SGgHS+5oCEdAtAmKbwz+FXV9lChoBkdAczhbedkJ8mgHS9JoCEdAtAmKJvYOD3V9lChoBkdAcnfqhDgIhWgHTQcBaAhHQLQJueTV2A51fZQoaAZHQHFNnJgb6xhoB0vjaAhHQLQJ3SSeRPp1fZQoaAZHQHDKWphnanJoB0vGaAhHQLQKB2OyVwB1fZQoaAZHQHOQTu8brC5oB00gAWgIR0C0Ci5xNqQBdX2UKGgGR0BzbKfwqiGnaAdL5mgIR0C0CjUrGza9dX2UKGgGR0BzFKElE7W/aAdNHQFoCEdAtApBaX8fm3V9lChoBkdAcrcSAH3UQWgHS/NoCEdAtApPl8w6AHV9lChoBkdAcKtKgZjx1GgHS8hoCEdAtApe5oXbd3V9lChoBkdAcemq5LAYYWgHS+VoCEdAtApo1O0sv3V9lChoBkdAcuH0AcT8HmgHS/1oCEdAtApo4ffXPXV9lChoBkdAceL3cpLEk2gHS/1oCEdAtAp1vQ4S6HV9lChoBkdAcVIaYNRWLmgHTRoBaAhHQLQKsq9Gqgh1fZQoaAZHQHCgUnb7CSBoB0vcaAhHQLQKwadtl7N1fZQoaAZHQHCAU2P1ct5oB0vnaAhHQLQK0DdP+GZ1fZQoaAZHQHHrqPKdQO5oB0v0aAhHQLQK6QjD8+B1fZQoaAZHQHNLapT/ACZoB0v1aAhHQLQK6jNIK+l1fZQoaAZHQHDQNDtw71ZoB0vJaAhHQLQLA8W9DhN1fZQoaAZHQHAIPRiPQv9oB0vmaAhHQLQQBx2St/51fZQoaAZHQHHyykwevIRoB0vmaAhHQLQQMZZB9kV1fZQoaAZHQHHwkyxiXppoB0viaAhHQLQQMr5IpYt1fZQoaAZHQG4t7LlmvntoB0vkaAhHQLQQQ1Oj7AN1fZQoaAZHQHIfOb3Gn4xoB0vSaAhHQLQQRn4wh4d1fZQoaAZHQHCiI8ZDRdBoB0vXaAhHQLQQV2AXl8x1fZQoaAZHQHBWvH93r2RoB0vxaAhHQLQQZh5gPVd1fZQoaAZHQHNPDC1qnFZoB0vZaAhHQLQQaUVzp5h1fZQoaAZHQHIdOavzOHFoB0vpaAhHQLQQcQcxTKl1fZQoaAZHQHOUi3G4qgBoB0vbaAhHQLQQshjOLR91fZQoaAZHQG8AeuV5a/1oB0v0aAhHQLQQyjZ+QU51fZQoaAZHQHLM216Vt41oB0vhaAhHQLQQy1UlzEJ1fZQoaAZHQC5q15Sm65JoB0tlaAhHQLQQ6HaN+9d1fZQoaAZHQHOhakdmxt5oB0voaAhHQLQQ8Bj4Hop1fZQoaAZHQHHiyXlbNbFoB0v/aAhHQLQREW/JvHd1fZQoaAZHQHARUY8+zMRoB0vNaAhHQLQRNHzYmLN1fZQoaAZHQHOyyDdxhlVoB00XAWgIR0C0EUzIBBAwdX2UKGgGR0BylfcIqsltaAdL02gIR0C0EWO801qGdX2UKGgGR0BOkjAaef7KaAdLh2gIR0C0EXeFL39KdX2UKGgGR0BzhTtZ3cHoaAdL6mgIR0C0EYXeaa1DdX2UKGgGR0Bya8ETxoZiaAdLy2gIR0C0EZVuzhP1dX2UKGgGR0BwdC0a6z3RaAdL4GgIR0C0Eadph4MXdX2UKGgGR0Byt1WOp84QaAdL/2gIR0C0EbKKHfuUdX2UKGgGR0By5t4LThHcaAdNVgJoCEdAtBHQ4ZMtb3V9lChoBkdAcPD0DU3GXGgHS+BoCEdAtBISD5CWvHV9lChoBkdAbzwWiUPhAGgHS9NoCEdAtBIcA+6iCnV9lChoBkdAbf6qWC2+f2gHS+poCEdAtBJFKcurZXV9lChoBkdAcFIuHvc8DGgHTQcBaAhHQLQSSxSpBHF1fZQoaAZHQHBXZR4yGi5oB0vcaAhHQLQSUxcE/0N1fZQoaAZHQHBrphvze41oB01xAWgIR0C0El4Vh1DCdX2UKGgGR0Bvv23OObRXaAdLzmgIR0C0EnnZbpu/dX2UKGgGR0ByiUZZSvTxaAdL7mgIR0C0Eo7BbfP5dX2UKGgGR0Byg1vZRKpUaAdL2GgIR0C0Ep1CswL3dX2UKGgGR0Buv6TINmUXaAdL3WgIR0C0ErcE3bVSdX2UKGgGR0BwpIjbBXS0aAdLymgIR0C0Esr3XZoPdX2UKGgGR0BzeqpuMuOCaAdLzGgIR0C0EtgN5MURdX2UKGgGR0BxFx/I8yN5aAdL8GgIR0C0Et/Ot4iYdX2UKGgGR0ByGTF+/gzhaAdL62gIR0C0EyORgZ0kdX2UKGgGR0ByBtwiqyWzaAdNMwFoCEdAtBNP/io86nV9lChoBkdAczBeKbayr2gHS9toCEdAtBNUfxMFlnV9lChoBkdAca+C4jKPn2gHS8NoCEdAtBNZ26kIonV9lChoBkdAcrl+L3sXzmgHS89oCEdAtBNwunMt9XV9lChoBkdAb+51h9b5dmgHS9JoCEdAtBOIqtozvnV9lChoBkdAcbTGViWmg2gHS+VoCEdAtBOX6zmfXnV9lChoBkdAcvuXyRSxaGgHTREBaAhHQLQTl8ma6SV1fZQoaAZHQHMaBhpg1FZoB0vvaAhHQLQTzElVtGd1fZQoaAZHQHG4YbCJoCdoB0voaAhHQLQT2EKE3851fZQoaAZHQHIa/tpmEoRoB0vDaAhHQLQT8Qr+YMR1fZQoaAZHQG9lDZDiOvNoB0vOaAhHQLQT8sUIsy11fZQoaAZHQHDeKPbO/tZoB0vbaAhHQLQT8T72tdR1fZQoaAZHQHJraAWi1zBoB0v/aAhHQLQUCPdl/Yt1fZQoaAZHQHFY07GNrCZoB0vpaAhHQLQUKxjriVB1fZQoaAZHQG8gPUBnzxxoB0vpaAhHQLQUc83uNPx1fZQoaAZHQG+XJe/pMYdoB0vOaAhHQLQUfFEiMYN1fZQoaAZHQHCDU0elsP9oB0vlaAhHQLQUp2OhkAh1fZQoaAZHQHOSMfzSThZoB0vYaAhHQLQU29MsYl91fZQoaAZHQHFuCIpH7P9oB0veaAhHQLQU6XQMQVd1fZQoaAZHQFSdlijL0SRoB0u9aAhHQLQU8jgydnV1fZQoaAZHQHBUdLL6k69oB0vwaAhHQLQU9W5paid1fZQoaAZHQG/stQTEit9oB00eAWgIR0C0FQBIOH32dX2UKGgGR0Bxr6hZha1UaAdNKAFoCEdAtBUvd1uBMHV9lChoBkdAcAmUtqYZ22gHS9doCEdAtBU9V81Gb3V9lChoBkdAcJjHY6GQCGgHS+hoCEdAtBU9nVXmvHV9lChoBkdAcg3jS5RTCWgHS9ZoCEdAtBVSTmnwX3V9lChoBkdAb8x99+gDimgHS+xoCEdAtBVYQwsXi3V9lChoBkdAcz6GrCFbmmgHS/hoCEdAtBVomgJ1JXV9lChoBkdAc6ReBQN1AGgHS/toCEdAtBWn67/XG3VlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d90baf85ccb5863e755ede8692ee32fdd99318e11b0d7103a5bafd6da8ba313
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fb134196e7acfd5e198b8a0c5377223c51e0481c3e6b41b7cc13250a4a8d89f
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 277.8241858, "std_reward": 22.280977325880794, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-21T14:08:02.578249"}
|