pratikthakkar007 commited on
Commit
71468d5
1 Parent(s): 92740b7

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-generation
5
+ widget:
6
+ - text: "I love AutoTrain because "
7
+ license: other
8
+ ---
9
+
10
+ # Model Trained Using AutoTrain
11
+
12
+ This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
13
+
14
+ # Usage
15
+
16
+ ```python
17
+
18
+ from transformers import AutoModelForCausalLM, AutoTokenizer
19
+
20
+ model_path = "PATH_TO_THIS_REPO"
21
+
22
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ model_path,
25
+ device_map="auto",
26
+ torch_dtype='auto'
27
+ ).eval()
28
+
29
+ # Prompt content: "hi"
30
+ messages = [
31
+ {"role": "user", "content": "hi"}
32
+ ]
33
+
34
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
35
+ output_ids = model.generate(input_ids.to('cuda'))
36
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
37
+
38
+ # Model response: "Hello! How can I assist you today?"
39
+ print(response)
40
+ ```
checkpoint-450/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: HuggingFaceH4/zephyr-7b-beta
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-450/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceH4/zephyr-7b-beta",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
checkpoint-450/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:876481d17a63a6ca9964e29bc86e51a959f392a78c366674375bb7bd87da0836
3
+ size 27280152
checkpoint-450/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:576409de17d3382752d1b47065e1f325980a0d176dfbc41e8ce6523780dfeb57
3
+ size 54633978
checkpoint-450/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
checkpoint-450/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1503058efffbdc3efefc668db5de2856ae97543b8639eb2ec61c5d8b43e911bd
3
+ size 14244
checkpoint-450/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4d4b34e7afaf300867939795c9615a9f6f382d574e467530e28ed648f1055fd
3
+ size 1064
checkpoint-450/special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
checkpoint-450/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-450/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-450/tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
37
+ "clean_up_tokenization_spaces": false,
38
+ "eos_token": "</s>",
39
+ "legacy": true,
40
+ "model_max_length": 2048,
41
+ "pad_token": "</s>",
42
+ "sp_model_kwargs": {},
43
+ "spaces_between_special_tokens": false,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "truncation_side": "left",
46
+ "unk_token": "<unk>",
47
+ "use_default_system_prompt": true
48
+ }
checkpoint-450/trainer_state.json ADDED
@@ -0,0 +1,2721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 50.0,
5
+ "eval_steps": 500,
6
+ "global_step": 450,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "learning_rate": 0.00022222222222222223,
14
+ "loss": 1.7682,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.22,
19
+ "learning_rate": 0.00044444444444444447,
20
+ "loss": 1.9883,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.33,
25
+ "learning_rate": 0.0006666666666666666,
26
+ "loss": 1.7947,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.44,
31
+ "learning_rate": 0.0008888888888888889,
32
+ "loss": 1.9388,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.56,
37
+ "learning_rate": 0.0011111111111111111,
38
+ "loss": 1.8301,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.67,
43
+ "learning_rate": 0.0011111111111111111,
44
+ "loss": 1.7121,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.78,
49
+ "learning_rate": 0.0011111111111111111,
50
+ "loss": 1.7248,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.89,
55
+ "learning_rate": 0.0013333333333333333,
56
+ "loss": 1.6582,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 1.0,
61
+ "learning_rate": 0.0013333333333333333,
62
+ "loss": 2.0618,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 1.11,
67
+ "learning_rate": 0.0013333333333333333,
68
+ "loss": 2.0288,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 1.22,
73
+ "learning_rate": 0.0013333333333333333,
74
+ "loss": 6.2236,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 1.33,
79
+ "learning_rate": 0.0013333333333333333,
80
+ "loss": 4.7077,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 1.44,
85
+ "learning_rate": 0.0013333333333333333,
86
+ "loss": 2.8244,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 1.56,
91
+ "learning_rate": 0.0013333333333333333,
92
+ "loss": 3.6065,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 1.67,
97
+ "learning_rate": 0.0015555555555555557,
98
+ "loss": 2.9129,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 1.78,
103
+ "learning_rate": 0.0017777777777777779,
104
+ "loss": 1.5032,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 1.89,
109
+ "learning_rate": 0.002,
110
+ "loss": 1.2412,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 2.0,
115
+ "learning_rate": 0.0022222222222222222,
116
+ "loss": 1.7111,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 2.11,
121
+ "learning_rate": 0.0024444444444444444,
122
+ "loss": 1.6141,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 2.22,
127
+ "learning_rate": 0.0026666666666666666,
128
+ "loss": 1.6745,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 2.33,
133
+ "learning_rate": 0.0028888888888888888,
134
+ "loss": 2.4298,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 2.44,
139
+ "learning_rate": 0.0031111111111111114,
140
+ "loss": 1.6993,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 2.56,
145
+ "learning_rate": 0.003333333333333333,
146
+ "loss": 4.6999,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 2.67,
151
+ "learning_rate": 0.0035555555555555557,
152
+ "loss": 3.5699,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 2.78,
157
+ "learning_rate": 0.003777777777777778,
158
+ "loss": 8.7543,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 2.89,
163
+ "learning_rate": 0.004,
164
+ "loss": 9.8707,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 3.0,
169
+ "learning_rate": 0.004222222222222223,
170
+ "loss": 10.1086,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 3.11,
175
+ "learning_rate": 0.0044444444444444444,
176
+ "loss": 9.2775,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 3.22,
181
+ "learning_rate": 0.004666666666666667,
182
+ "loss": 7.8785,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 3.33,
187
+ "learning_rate": 0.004888888888888889,
188
+ "loss": 7.472,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 3.44,
193
+ "learning_rate": 0.0051111111111111105,
194
+ "loss": 7.2495,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 3.56,
199
+ "learning_rate": 0.005333333333333333,
200
+ "loss": 13.0327,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 3.67,
205
+ "learning_rate": 0.005555555555555556,
206
+ "loss": 15.2515,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 3.78,
211
+ "learning_rate": 0.0057777777777777775,
212
+ "loss": 12.4308,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 3.89,
217
+ "learning_rate": 0.006,
218
+ "loss": 11.2797,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 4.0,
223
+ "learning_rate": 0.006222222222222223,
224
+ "loss": 9.5219,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 4.11,
229
+ "learning_rate": 0.006444444444444445,
230
+ "loss": 7.6947,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 4.22,
235
+ "learning_rate": 0.006444444444444445,
236
+ "loss": 11.9818,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 4.33,
241
+ "learning_rate": 0.006444444444444445,
242
+ "loss": 14.0646,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 4.44,
247
+ "learning_rate": 0.006666666666666666,
248
+ "loss": 12.282,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 4.56,
253
+ "learning_rate": 0.006888888888888889,
254
+ "loss": 10.8636,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 4.67,
259
+ "learning_rate": 0.0071111111111111115,
260
+ "loss": 8.8291,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 4.78,
265
+ "learning_rate": 0.007333333333333333,
266
+ "loss": 8.4366,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 4.89,
271
+ "learning_rate": 0.007555555555555556,
272
+ "loss": 8.9278,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 5.0,
277
+ "learning_rate": 0.007777777777777778,
278
+ "loss": 11.5827,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 5.11,
283
+ "learning_rate": 0.008,
284
+ "loss": 8.8135,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 5.22,
289
+ "learning_rate": 0.008222222222222223,
290
+ "loss": 7.5243,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 5.33,
295
+ "learning_rate": 0.008444444444444445,
296
+ "loss": 8.1523,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 5.44,
301
+ "learning_rate": 0.008666666666666668,
302
+ "loss": 8.2508,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 5.56,
307
+ "learning_rate": 0.008888888888888889,
308
+ "loss": 7.961,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 5.67,
313
+ "learning_rate": 0.009111111111111111,
314
+ "loss": 7.3086,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 5.78,
319
+ "learning_rate": 0.009333333333333334,
320
+ "loss": 7.3684,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 5.89,
325
+ "learning_rate": 0.009555555555555557,
326
+ "loss": 7.3783,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 6.0,
331
+ "learning_rate": 0.009777777777777778,
332
+ "loss": 9.3611,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 6.11,
337
+ "learning_rate": 0.01,
338
+ "loss": 12.1977,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 6.22,
343
+ "learning_rate": 0.009975308641975308,
344
+ "loss": 7.2867,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 6.33,
349
+ "learning_rate": 0.009950617283950617,
350
+ "loss": 8.0552,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 6.44,
355
+ "learning_rate": 0.009925925925925927,
356
+ "loss": 7.7156,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 6.56,
361
+ "learning_rate": 0.009901234567901235,
362
+ "loss": 7.3561,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 6.67,
367
+ "learning_rate": 0.009876543209876543,
368
+ "loss": 7.4133,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 6.78,
373
+ "learning_rate": 0.009851851851851851,
374
+ "loss": 16.2833,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 6.89,
379
+ "learning_rate": 0.009827160493827161,
380
+ "loss": 8.633,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 7.0,
385
+ "learning_rate": 0.00980246913580247,
386
+ "loss": 6.6628,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 7.11,
391
+ "learning_rate": 0.009777777777777778,
392
+ "loss": 6.9888,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 7.22,
397
+ "learning_rate": 0.009753086419753086,
398
+ "loss": 7.3082,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 7.33,
403
+ "learning_rate": 0.009728395061728396,
404
+ "loss": 7.2472,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 7.44,
409
+ "learning_rate": 0.009703703703703704,
410
+ "loss": 7.0683,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 7.56,
415
+ "learning_rate": 0.009679012345679012,
416
+ "loss": 7.1155,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 7.67,
421
+ "learning_rate": 0.009654320987654322,
422
+ "loss": 6.8406,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 7.78,
427
+ "learning_rate": 0.009629629629629629,
428
+ "loss": 7.1108,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 7.89,
433
+ "learning_rate": 0.009604938271604939,
434
+ "loss": 6.7208,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 8.0,
439
+ "learning_rate": 0.009580246913580247,
440
+ "loss": 6.7704,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 8.11,
445
+ "learning_rate": 0.009555555555555557,
446
+ "loss": 6.8468,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 8.22,
451
+ "learning_rate": 0.009530864197530865,
452
+ "loss": 6.9493,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 8.33,
457
+ "learning_rate": 0.009506172839506173,
458
+ "loss": 7.0246,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 8.44,
463
+ "learning_rate": 0.009481481481481481,
464
+ "loss": 6.7802,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 8.56,
469
+ "learning_rate": 0.00945679012345679,
470
+ "loss": 6.8637,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 8.67,
475
+ "learning_rate": 0.0094320987654321,
476
+ "loss": 6.8141,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 8.78,
481
+ "learning_rate": 0.0094320987654321,
482
+ "loss": 0.0,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 8.89,
487
+ "learning_rate": 0.0094320987654321,
488
+ "loss": 0.0,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 9.0,
493
+ "learning_rate": 0.0094320987654321,
494
+ "loss": 0.0,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 9.11,
499
+ "learning_rate": 0.0094320987654321,
500
+ "loss": 0.0,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 9.22,
505
+ "learning_rate": 0.0094320987654321,
506
+ "loss": 0.0,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 9.33,
511
+ "learning_rate": 0.0094320987654321,
512
+ "loss": 0.0,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 9.44,
517
+ "learning_rate": 0.0094320987654321,
518
+ "loss": 0.0,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 9.56,
523
+ "learning_rate": 0.0094320987654321,
524
+ "loss": 0.0,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 9.67,
529
+ "learning_rate": 0.0094320987654321,
530
+ "loss": 0.0,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 9.78,
535
+ "learning_rate": 0.0094320987654321,
536
+ "loss": 0.0,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 9.89,
541
+ "learning_rate": 0.0094320987654321,
542
+ "loss": 0.0,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 10.0,
547
+ "learning_rate": 0.0094320987654321,
548
+ "loss": 0.0,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 10.11,
553
+ "learning_rate": 0.0094320987654321,
554
+ "loss": 0.0,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 10.22,
559
+ "learning_rate": 0.0094320987654321,
560
+ "loss": 0.0,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 10.33,
565
+ "learning_rate": 0.009407407407407408,
566
+ "loss": 7.0349,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 10.44,
571
+ "learning_rate": 0.009407407407407408,
572
+ "loss": 0.0,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 10.56,
577
+ "learning_rate": 0.009407407407407408,
578
+ "loss": 0.0,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 10.67,
583
+ "learning_rate": 0.009407407407407408,
584
+ "loss": 0.0,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 10.78,
589
+ "learning_rate": 0.009407407407407408,
590
+ "loss": 0.0,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 10.89,
595
+ "learning_rate": 0.009407407407407408,
596
+ "loss": 0.0,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 11.0,
601
+ "learning_rate": 0.009407407407407408,
602
+ "loss": 0.0,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 11.11,
607
+ "learning_rate": 0.009407407407407408,
608
+ "loss": 0.0,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 11.22,
613
+ "learning_rate": 0.009407407407407408,
614
+ "loss": 0.0,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 11.33,
619
+ "learning_rate": 0.009407407407407408,
620
+ "loss": 0.0,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 11.44,
625
+ "learning_rate": 0.009407407407407408,
626
+ "loss": 0.0,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 11.56,
631
+ "learning_rate": 0.009407407407407408,
632
+ "loss": 0.0,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 11.67,
637
+ "learning_rate": 0.009407407407407408,
638
+ "loss": 0.0,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 11.78,
643
+ "learning_rate": 0.009407407407407408,
644
+ "loss": 0.0,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 11.89,
649
+ "learning_rate": 0.009407407407407408,
650
+ "loss": 0.0,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 12.0,
655
+ "learning_rate": 0.009407407407407408,
656
+ "loss": 0.0,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 12.11,
661
+ "learning_rate": 0.009407407407407408,
662
+ "loss": 0.0,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 12.22,
667
+ "learning_rate": 0.009407407407407408,
668
+ "loss": 0.0,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 12.33,
673
+ "learning_rate": 0.009407407407407408,
674
+ "loss": 0.0,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 12.44,
679
+ "learning_rate": 0.009407407407407408,
680
+ "loss": 0.0,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 12.56,
685
+ "learning_rate": 0.009407407407407408,
686
+ "loss": 0.0,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 12.67,
691
+ "learning_rate": 0.009407407407407408,
692
+ "loss": 0.0,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 12.78,
697
+ "learning_rate": 0.009407407407407408,
698
+ "loss": 0.0,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 12.89,
703
+ "learning_rate": 0.009407407407407408,
704
+ "loss": 0.0,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 13.0,
709
+ "learning_rate": 0.009407407407407408,
710
+ "loss": 0.0,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 13.11,
715
+ "learning_rate": 0.009407407407407408,
716
+ "loss": 0.0,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 13.22,
721
+ "learning_rate": 0.009407407407407408,
722
+ "loss": 0.0,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 13.33,
727
+ "learning_rate": 0.009407407407407408,
728
+ "loss": 0.0,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 13.44,
733
+ "learning_rate": 0.009407407407407408,
734
+ "loss": 0.0,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 13.56,
739
+ "learning_rate": 0.009407407407407408,
740
+ "loss": 0.0,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 13.67,
745
+ "learning_rate": 0.009407407407407408,
746
+ "loss": 0.0,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 13.78,
751
+ "learning_rate": 0.009407407407407408,
752
+ "loss": 0.0,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 13.89,
757
+ "learning_rate": 0.009407407407407408,
758
+ "loss": 0.0,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 14.0,
763
+ "learning_rate": 0.009407407407407408,
764
+ "loss": 0.0,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 14.11,
769
+ "learning_rate": 0.009407407407407408,
770
+ "loss": 0.0,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 14.22,
775
+ "learning_rate": 0.009407407407407408,
776
+ "loss": 0.0,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 14.33,
781
+ "learning_rate": 0.009407407407407408,
782
+ "loss": 0.0,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 14.44,
787
+ "learning_rate": 0.009407407407407408,
788
+ "loss": 0.0,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 14.56,
793
+ "learning_rate": 0.009407407407407408,
794
+ "loss": 0.0,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 14.67,
799
+ "learning_rate": 0.009407407407407408,
800
+ "loss": 0.0,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 14.78,
805
+ "learning_rate": 0.009407407407407408,
806
+ "loss": 0.0,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 14.89,
811
+ "learning_rate": 0.009407407407407408,
812
+ "loss": 0.0,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 15.0,
817
+ "learning_rate": 0.009407407407407408,
818
+ "loss": 0.0,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 15.11,
823
+ "learning_rate": 0.009407407407407408,
824
+ "loss": 0.0,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 15.22,
829
+ "learning_rate": 0.009407407407407408,
830
+ "loss": 0.0,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 15.33,
835
+ "learning_rate": 0.009407407407407408,
836
+ "loss": 0.0,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 15.44,
841
+ "learning_rate": 0.009407407407407408,
842
+ "loss": 0.0,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 15.56,
847
+ "learning_rate": 0.009407407407407408,
848
+ "loss": 0.0,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 15.67,
853
+ "learning_rate": 0.009407407407407408,
854
+ "loss": 0.0,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 15.78,
859
+ "learning_rate": 0.009407407407407408,
860
+ "loss": 0.0,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 15.89,
865
+ "learning_rate": 0.009407407407407408,
866
+ "loss": 0.0,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 16.0,
871
+ "learning_rate": 0.009407407407407408,
872
+ "loss": 0.0,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 16.11,
877
+ "learning_rate": 0.009407407407407408,
878
+ "loss": 0.0,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 16.22,
883
+ "learning_rate": 0.009407407407407408,
884
+ "loss": 0.0,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 16.33,
889
+ "learning_rate": 0.009407407407407408,
890
+ "loss": 0.0,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 16.44,
895
+ "learning_rate": 0.009407407407407408,
896
+ "loss": 0.0,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 16.56,
901
+ "learning_rate": 0.009407407407407408,
902
+ "loss": 0.0,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 16.67,
907
+ "learning_rate": 0.009407407407407408,
908
+ "loss": 0.0,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 16.78,
913
+ "learning_rate": 0.009407407407407408,
914
+ "loss": 0.0,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 16.89,
919
+ "learning_rate": 0.009407407407407408,
920
+ "loss": 0.0,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 17.0,
925
+ "learning_rate": 0.009407407407407408,
926
+ "loss": 0.0,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 17.11,
931
+ "learning_rate": 0.009407407407407408,
932
+ "loss": 0.0,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 17.22,
937
+ "learning_rate": 0.009407407407407408,
938
+ "loss": 0.0,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 17.33,
943
+ "learning_rate": 0.009407407407407408,
944
+ "loss": 0.0,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 17.44,
949
+ "learning_rate": 0.009407407407407408,
950
+ "loss": 0.0,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 17.56,
955
+ "learning_rate": 0.009407407407407408,
956
+ "loss": 0.0,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 17.67,
961
+ "learning_rate": 0.009407407407407408,
962
+ "loss": 0.0,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 17.78,
967
+ "learning_rate": 0.009407407407407408,
968
+ "loss": 0.0,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 17.89,
973
+ "learning_rate": 0.009407407407407408,
974
+ "loss": 0.0,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 18.0,
979
+ "learning_rate": 0.009407407407407408,
980
+ "loss": 0.0,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 18.11,
985
+ "learning_rate": 0.009407407407407408,
986
+ "loss": 0.0,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 18.22,
991
+ "learning_rate": 0.009407407407407408,
992
+ "loss": 0.0,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 18.33,
997
+ "learning_rate": 0.009407407407407408,
998
+ "loss": 0.0,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 18.44,
1003
+ "learning_rate": 0.009407407407407408,
1004
+ "loss": 0.0,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 18.56,
1009
+ "learning_rate": 0.009407407407407408,
1010
+ "loss": 0.0,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 18.67,
1015
+ "learning_rate": 0.009407407407407408,
1016
+ "loss": 0.0,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 18.78,
1021
+ "learning_rate": 0.009407407407407408,
1022
+ "loss": 0.0,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 18.89,
1027
+ "learning_rate": 0.009407407407407408,
1028
+ "loss": 0.0,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 19.0,
1033
+ "learning_rate": 0.009407407407407408,
1034
+ "loss": 0.0,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 19.11,
1039
+ "learning_rate": 0.009407407407407408,
1040
+ "loss": 0.0,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 19.22,
1045
+ "learning_rate": 0.009407407407407408,
1046
+ "loss": 0.0,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 19.33,
1051
+ "learning_rate": 0.009407407407407408,
1052
+ "loss": 0.0,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 19.44,
1057
+ "learning_rate": 0.009407407407407408,
1058
+ "loss": 0.0,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 19.56,
1063
+ "learning_rate": 0.009407407407407408,
1064
+ "loss": 0.0,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 19.67,
1069
+ "learning_rate": 0.009407407407407408,
1070
+ "loss": 0.0,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 19.78,
1075
+ "learning_rate": 0.009407407407407408,
1076
+ "loss": 0.0,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 19.89,
1081
+ "learning_rate": 0.009407407407407408,
1082
+ "loss": 0.0,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 20.0,
1087
+ "learning_rate": 0.009407407407407408,
1088
+ "loss": 0.0,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 20.11,
1093
+ "learning_rate": 0.009407407407407408,
1094
+ "loss": 0.0,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 20.22,
1099
+ "learning_rate": 0.009407407407407408,
1100
+ "loss": 0.0,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 20.33,
1105
+ "learning_rate": 0.009407407407407408,
1106
+ "loss": 0.0,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 20.44,
1111
+ "learning_rate": 0.009407407407407408,
1112
+ "loss": 0.0,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 20.56,
1117
+ "learning_rate": 0.009407407407407408,
1118
+ "loss": 0.0,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 20.67,
1123
+ "learning_rate": 0.009407407407407408,
1124
+ "loss": 0.0,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 20.78,
1129
+ "learning_rate": 0.009407407407407408,
1130
+ "loss": 0.0,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 20.89,
1135
+ "learning_rate": 0.009407407407407408,
1136
+ "loss": 0.0,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 21.0,
1141
+ "learning_rate": 0.009407407407407408,
1142
+ "loss": 0.0,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 21.11,
1147
+ "learning_rate": 0.009407407407407408,
1148
+ "loss": 0.0,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 21.22,
1153
+ "learning_rate": 0.009407407407407408,
1154
+ "loss": 0.0,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 21.33,
1159
+ "learning_rate": 0.009407407407407408,
1160
+ "loss": 0.0,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 21.44,
1165
+ "learning_rate": 0.009407407407407408,
1166
+ "loss": 0.0,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 21.56,
1171
+ "learning_rate": 0.009407407407407408,
1172
+ "loss": 0.0,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 21.67,
1177
+ "learning_rate": 0.009407407407407408,
1178
+ "loss": 0.0,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 21.78,
1183
+ "learning_rate": 0.009407407407407408,
1184
+ "loss": 0.0,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 21.89,
1189
+ "learning_rate": 0.009407407407407408,
1190
+ "loss": 0.0,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 22.0,
1195
+ "learning_rate": 0.009407407407407408,
1196
+ "loss": 0.0,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 22.11,
1201
+ "learning_rate": 0.009407407407407408,
1202
+ "loss": 0.0,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 22.22,
1207
+ "learning_rate": 0.009407407407407408,
1208
+ "loss": 0.0,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 22.33,
1213
+ "learning_rate": 0.009407407407407408,
1214
+ "loss": 0.0,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 22.44,
1219
+ "learning_rate": 0.009407407407407408,
1220
+ "loss": 0.0,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 22.56,
1225
+ "learning_rate": 0.009407407407407408,
1226
+ "loss": 0.0,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 22.67,
1231
+ "learning_rate": 0.009407407407407408,
1232
+ "loss": 0.0,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 22.78,
1237
+ "learning_rate": 0.009407407407407408,
1238
+ "loss": 0.0,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 22.89,
1243
+ "learning_rate": 0.009407407407407408,
1244
+ "loss": 0.0,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 23.0,
1249
+ "learning_rate": 0.009407407407407408,
1250
+ "loss": 0.0,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 23.11,
1255
+ "learning_rate": 0.009407407407407408,
1256
+ "loss": 0.0,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 23.22,
1261
+ "learning_rate": 0.009407407407407408,
1262
+ "loss": 0.0,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 23.33,
1267
+ "learning_rate": 0.009407407407407408,
1268
+ "loss": 0.0,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 23.44,
1273
+ "learning_rate": 0.009407407407407408,
1274
+ "loss": 0.0,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 23.56,
1279
+ "learning_rate": 0.009407407407407408,
1280
+ "loss": 0.0,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 23.67,
1285
+ "learning_rate": 0.009407407407407408,
1286
+ "loss": 0.0,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 23.78,
1291
+ "learning_rate": 0.009407407407407408,
1292
+ "loss": 0.0,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 23.89,
1297
+ "learning_rate": 0.009407407407407408,
1298
+ "loss": 0.0,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 24.0,
1303
+ "learning_rate": 0.009407407407407408,
1304
+ "loss": 0.0,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 24.11,
1309
+ "learning_rate": 0.009407407407407408,
1310
+ "loss": 0.0,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 24.22,
1315
+ "learning_rate": 0.009407407407407408,
1316
+ "loss": 0.0,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 24.33,
1321
+ "learning_rate": 0.009407407407407408,
1322
+ "loss": 0.0,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 24.44,
1327
+ "learning_rate": 0.009407407407407408,
1328
+ "loss": 0.0,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 24.56,
1333
+ "learning_rate": 0.009407407407407408,
1334
+ "loss": 0.0,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 24.67,
1339
+ "learning_rate": 0.009407407407407408,
1340
+ "loss": 0.0,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 24.78,
1345
+ "learning_rate": 0.009407407407407408,
1346
+ "loss": 0.0,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 24.89,
1351
+ "learning_rate": 0.009407407407407408,
1352
+ "loss": 0.0,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 25.0,
1357
+ "learning_rate": 0.009407407407407408,
1358
+ "loss": 0.0,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 25.11,
1363
+ "learning_rate": 0.009407407407407408,
1364
+ "loss": 0.0,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 25.22,
1369
+ "learning_rate": 0.009407407407407408,
1370
+ "loss": 0.0,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 25.33,
1375
+ "learning_rate": 0.009407407407407408,
1376
+ "loss": 0.0,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 25.44,
1381
+ "learning_rate": 0.009407407407407408,
1382
+ "loss": 0.0,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 25.56,
1387
+ "learning_rate": 0.009407407407407408,
1388
+ "loss": 0.0,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 25.67,
1393
+ "learning_rate": 0.009407407407407408,
1394
+ "loss": 0.0,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 25.78,
1399
+ "learning_rate": 0.009407407407407408,
1400
+ "loss": 0.0,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 25.89,
1405
+ "learning_rate": 0.009407407407407408,
1406
+ "loss": 0.0,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 26.0,
1411
+ "learning_rate": 0.009407407407407408,
1412
+ "loss": 0.0,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 26.11,
1417
+ "learning_rate": 0.009407407407407408,
1418
+ "loss": 0.0,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 26.22,
1423
+ "learning_rate": 0.009407407407407408,
1424
+ "loss": 0.0,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 26.33,
1429
+ "learning_rate": 0.009407407407407408,
1430
+ "loss": 0.0,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 26.44,
1435
+ "learning_rate": 0.009407407407407408,
1436
+ "loss": 0.0,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 26.56,
1441
+ "learning_rate": 0.009407407407407408,
1442
+ "loss": 0.0,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 26.67,
1447
+ "learning_rate": 0.009407407407407408,
1448
+ "loss": 0.0,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 26.78,
1453
+ "learning_rate": 0.009407407407407408,
1454
+ "loss": 0.0,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 26.89,
1459
+ "learning_rate": 0.009407407407407408,
1460
+ "loss": 0.0,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 27.0,
1465
+ "learning_rate": 0.009407407407407408,
1466
+ "loss": 0.0,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 27.11,
1471
+ "learning_rate": 0.009407407407407408,
1472
+ "loss": 0.0,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 27.22,
1477
+ "learning_rate": 0.009407407407407408,
1478
+ "loss": 0.0,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 27.33,
1483
+ "learning_rate": 0.009407407407407408,
1484
+ "loss": 0.0,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 27.44,
1489
+ "learning_rate": 0.009407407407407408,
1490
+ "loss": 0.0,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 27.56,
1495
+ "learning_rate": 0.009407407407407408,
1496
+ "loss": 0.0,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 27.67,
1501
+ "learning_rate": 0.009407407407407408,
1502
+ "loss": 0.0,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 27.78,
1507
+ "learning_rate": 0.009407407407407408,
1508
+ "loss": 0.0,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 27.89,
1513
+ "learning_rate": 0.009407407407407408,
1514
+ "loss": 0.0,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 28.0,
1519
+ "learning_rate": 0.009407407407407408,
1520
+ "loss": 0.0,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 28.11,
1525
+ "learning_rate": 0.009407407407407408,
1526
+ "loss": 0.0,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 28.22,
1531
+ "learning_rate": 0.009407407407407408,
1532
+ "loss": 0.0,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 28.33,
1537
+ "learning_rate": 0.009407407407407408,
1538
+ "loss": 0.0,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 28.44,
1543
+ "learning_rate": 0.009407407407407408,
1544
+ "loss": 0.0,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 28.56,
1549
+ "learning_rate": 0.009407407407407408,
1550
+ "loss": 0.0,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 28.67,
1555
+ "learning_rate": 0.009407407407407408,
1556
+ "loss": 0.0,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 28.78,
1561
+ "learning_rate": 0.009407407407407408,
1562
+ "loss": 0.0,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 28.89,
1567
+ "learning_rate": 0.009407407407407408,
1568
+ "loss": 0.0,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 29.0,
1573
+ "learning_rate": 0.009407407407407408,
1574
+ "loss": 0.0,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 29.11,
1579
+ "learning_rate": 0.009407407407407408,
1580
+ "loss": 0.0,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 29.22,
1585
+ "learning_rate": 0.009407407407407408,
1586
+ "loss": 0.0,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 29.33,
1591
+ "learning_rate": 0.009407407407407408,
1592
+ "loss": 0.0,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 29.44,
1597
+ "learning_rate": 0.009407407407407408,
1598
+ "loss": 0.0,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 29.56,
1603
+ "learning_rate": 0.009407407407407408,
1604
+ "loss": 0.0,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 29.67,
1609
+ "learning_rate": 0.009407407407407408,
1610
+ "loss": 0.0,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 29.78,
1615
+ "learning_rate": 0.009407407407407408,
1616
+ "loss": 0.0,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 29.89,
1621
+ "learning_rate": 0.009407407407407408,
1622
+ "loss": 0.0,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 30.0,
1627
+ "learning_rate": 0.009407407407407408,
1628
+ "loss": 0.0,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 30.11,
1633
+ "learning_rate": 0.009407407407407408,
1634
+ "loss": 0.0,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 30.22,
1639
+ "learning_rate": 0.009407407407407408,
1640
+ "loss": 0.0,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 30.33,
1645
+ "learning_rate": 0.009407407407407408,
1646
+ "loss": 0.0,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 30.44,
1651
+ "learning_rate": 0.009407407407407408,
1652
+ "loss": 0.0,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 30.56,
1657
+ "learning_rate": 0.009407407407407408,
1658
+ "loss": 0.0,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 30.67,
1663
+ "learning_rate": 0.009407407407407408,
1664
+ "loss": 0.0,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 30.78,
1669
+ "learning_rate": 0.009407407407407408,
1670
+ "loss": 0.0,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 30.89,
1675
+ "learning_rate": 0.009407407407407408,
1676
+ "loss": 0.0,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 31.0,
1681
+ "learning_rate": 0.009382716049382716,
1682
+ "loss": 6.9362,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 31.11,
1687
+ "learning_rate": 0.009382716049382716,
1688
+ "loss": 0.0,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 31.22,
1693
+ "learning_rate": 0.009382716049382716,
1694
+ "loss": 0.0,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 31.33,
1699
+ "learning_rate": 0.009382716049382716,
1700
+ "loss": 0.0,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 31.44,
1705
+ "learning_rate": 0.009382716049382716,
1706
+ "loss": 0.0,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 31.56,
1711
+ "learning_rate": 0.009382716049382716,
1712
+ "loss": 0.0,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 31.67,
1717
+ "learning_rate": 0.009382716049382716,
1718
+ "loss": 0.0,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 31.78,
1723
+ "learning_rate": 0.009382716049382716,
1724
+ "loss": 0.0,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 31.89,
1729
+ "learning_rate": 0.009382716049382716,
1730
+ "loss": 0.0,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 32.0,
1735
+ "learning_rate": 0.009382716049382716,
1736
+ "loss": 0.0,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 32.11,
1741
+ "learning_rate": 0.009382716049382716,
1742
+ "loss": 0.0,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 32.22,
1747
+ "learning_rate": 0.009382716049382716,
1748
+ "loss": 0.0,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 32.33,
1753
+ "learning_rate": 0.009382716049382716,
1754
+ "loss": 0.0,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 32.44,
1759
+ "learning_rate": 0.009382716049382716,
1760
+ "loss": 0.0,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 32.56,
1765
+ "learning_rate": 0.009382716049382716,
1766
+ "loss": 0.0,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 32.67,
1771
+ "learning_rate": 0.009382716049382716,
1772
+ "loss": 0.0,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 32.78,
1777
+ "learning_rate": 0.009382716049382716,
1778
+ "loss": 0.0,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 32.89,
1783
+ "learning_rate": 0.009382716049382716,
1784
+ "loss": 0.0,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 33.0,
1789
+ "learning_rate": 0.009382716049382716,
1790
+ "loss": 0.0,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 33.11,
1795
+ "learning_rate": 0.009382716049382716,
1796
+ "loss": 0.0,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 33.22,
1801
+ "learning_rate": 0.009382716049382716,
1802
+ "loss": 0.0,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 33.33,
1807
+ "learning_rate": 0.009382716049382716,
1808
+ "loss": 0.0,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 33.44,
1813
+ "learning_rate": 0.009382716049382716,
1814
+ "loss": 0.0,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 33.56,
1819
+ "learning_rate": 0.009382716049382716,
1820
+ "loss": 0.0,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 33.67,
1825
+ "learning_rate": 0.009382716049382716,
1826
+ "loss": 0.0,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 33.78,
1831
+ "learning_rate": 0.009382716049382716,
1832
+ "loss": 0.0,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 33.89,
1837
+ "learning_rate": 0.009382716049382716,
1838
+ "loss": 0.0,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 34.0,
1843
+ "learning_rate": 0.009382716049382716,
1844
+ "loss": 0.0,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 34.11,
1849
+ "learning_rate": 0.009382716049382716,
1850
+ "loss": 0.0,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 34.22,
1855
+ "learning_rate": 0.009382716049382716,
1856
+ "loss": 0.0,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 34.33,
1861
+ "learning_rate": 0.009382716049382716,
1862
+ "loss": 0.0,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 34.44,
1867
+ "learning_rate": 0.009382716049382716,
1868
+ "loss": 0.0,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 34.56,
1873
+ "learning_rate": 0.009382716049382716,
1874
+ "loss": 0.0,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 34.67,
1879
+ "learning_rate": 0.009382716049382716,
1880
+ "loss": 0.0,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 34.78,
1885
+ "learning_rate": 0.009382716049382716,
1886
+ "loss": 0.0,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 34.89,
1891
+ "learning_rate": 0.009382716049382716,
1892
+ "loss": 0.0,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 35.0,
1897
+ "learning_rate": 0.009382716049382716,
1898
+ "loss": 0.0,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 35.11,
1903
+ "learning_rate": 0.009382716049382716,
1904
+ "loss": 0.0,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 35.22,
1909
+ "learning_rate": 0.009382716049382716,
1910
+ "loss": 0.0,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 35.33,
1915
+ "learning_rate": 0.009382716049382716,
1916
+ "loss": 0.0,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 35.44,
1921
+ "learning_rate": 0.009382716049382716,
1922
+ "loss": 0.0,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 35.56,
1927
+ "learning_rate": 0.009382716049382716,
1928
+ "loss": 0.0,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 35.67,
1933
+ "learning_rate": 0.009382716049382716,
1934
+ "loss": 0.0,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 35.78,
1939
+ "learning_rate": 0.009382716049382716,
1940
+ "loss": 0.0,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 35.89,
1945
+ "learning_rate": 0.009382716049382716,
1946
+ "loss": 0.0,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 36.0,
1951
+ "learning_rate": 0.009382716049382716,
1952
+ "loss": 0.0,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 36.11,
1957
+ "learning_rate": 0.009382716049382716,
1958
+ "loss": 0.0,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 36.22,
1963
+ "learning_rate": 0.009382716049382716,
1964
+ "loss": 0.0,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 36.33,
1969
+ "learning_rate": 0.009382716049382716,
1970
+ "loss": 0.0,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 36.44,
1975
+ "learning_rate": 0.009382716049382716,
1976
+ "loss": 0.0,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 36.56,
1981
+ "learning_rate": 0.009382716049382716,
1982
+ "loss": 0.0,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 36.67,
1987
+ "learning_rate": 0.009382716049382716,
1988
+ "loss": 0.0,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 36.78,
1993
+ "learning_rate": 0.009382716049382716,
1994
+ "loss": 0.0,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 36.89,
1999
+ "learning_rate": 0.009382716049382716,
2000
+ "loss": 0.0,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 37.0,
2005
+ "learning_rate": 0.009382716049382716,
2006
+ "loss": 0.0,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 37.11,
2011
+ "learning_rate": 0.009382716049382716,
2012
+ "loss": 0.0,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 37.22,
2017
+ "learning_rate": 0.009382716049382716,
2018
+ "loss": 0.0,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 37.33,
2023
+ "learning_rate": 0.009382716049382716,
2024
+ "loss": 0.0,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 37.44,
2029
+ "learning_rate": 0.009382716049382716,
2030
+ "loss": 0.0,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 37.56,
2035
+ "learning_rate": 0.009382716049382716,
2036
+ "loss": 0.0,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 37.67,
2041
+ "learning_rate": 0.009382716049382716,
2042
+ "loss": 0.0,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 37.78,
2047
+ "learning_rate": 0.009382716049382716,
2048
+ "loss": 0.0,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 37.89,
2053
+ "learning_rate": 0.009382716049382716,
2054
+ "loss": 0.0,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 38.0,
2059
+ "learning_rate": 0.009382716049382716,
2060
+ "loss": 0.0,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 38.11,
2065
+ "learning_rate": 0.009382716049382716,
2066
+ "loss": 0.0,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 38.22,
2071
+ "learning_rate": 0.009382716049382716,
2072
+ "loss": 0.0,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 38.33,
2077
+ "learning_rate": 0.009382716049382716,
2078
+ "loss": 0.0,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 38.44,
2083
+ "learning_rate": 0.009382716049382716,
2084
+ "loss": 0.0,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 38.56,
2089
+ "learning_rate": 0.009382716049382716,
2090
+ "loss": 0.0,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 38.67,
2095
+ "learning_rate": 0.009382716049382716,
2096
+ "loss": 0.0,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 38.78,
2101
+ "learning_rate": 0.009382716049382716,
2102
+ "loss": 0.0,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 38.89,
2107
+ "learning_rate": 0.009382716049382716,
2108
+ "loss": 0.0,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 39.0,
2113
+ "learning_rate": 0.009382716049382716,
2114
+ "loss": 0.0,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 39.11,
2119
+ "learning_rate": 0.009382716049382716,
2120
+ "loss": 0.0,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 39.22,
2125
+ "learning_rate": 0.009382716049382716,
2126
+ "loss": 0.0,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 39.33,
2131
+ "learning_rate": 0.009382716049382716,
2132
+ "loss": 0.0,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 39.44,
2137
+ "learning_rate": 0.009382716049382716,
2138
+ "loss": 0.0,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 39.56,
2143
+ "learning_rate": 0.009382716049382716,
2144
+ "loss": 0.0,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 39.67,
2149
+ "learning_rate": 0.009382716049382716,
2150
+ "loss": 0.0,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 39.78,
2155
+ "learning_rate": 0.009382716049382716,
2156
+ "loss": 0.0,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 39.89,
2161
+ "learning_rate": 0.009382716049382716,
2162
+ "loss": 0.0,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 40.0,
2167
+ "learning_rate": 0.009382716049382716,
2168
+ "loss": 0.0,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 40.11,
2173
+ "learning_rate": 0.009382716049382716,
2174
+ "loss": 0.0,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 40.22,
2179
+ "learning_rate": 0.009382716049382716,
2180
+ "loss": 0.0,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 40.33,
2185
+ "learning_rate": 0.009382716049382716,
2186
+ "loss": 0.0,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 40.44,
2191
+ "learning_rate": 0.009382716049382716,
2192
+ "loss": 0.0,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 40.56,
2197
+ "learning_rate": 0.009382716049382716,
2198
+ "loss": 0.0,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 40.67,
2203
+ "learning_rate": 0.009382716049382716,
2204
+ "loss": 0.0,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 40.78,
2209
+ "learning_rate": 0.009382716049382716,
2210
+ "loss": 0.0,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 40.89,
2215
+ "learning_rate": 0.009382716049382716,
2216
+ "loss": 0.0,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 41.0,
2221
+ "learning_rate": 0.009382716049382716,
2222
+ "loss": 0.0,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 41.11,
2227
+ "learning_rate": 0.009382716049382716,
2228
+ "loss": 0.0,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 41.22,
2233
+ "learning_rate": 0.009382716049382716,
2234
+ "loss": 0.0,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 41.33,
2239
+ "learning_rate": 0.009382716049382716,
2240
+ "loss": 0.0,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 41.44,
2245
+ "learning_rate": 0.009382716049382716,
2246
+ "loss": 0.0,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 41.56,
2251
+ "learning_rate": 0.009382716049382716,
2252
+ "loss": 0.0,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 41.67,
2257
+ "learning_rate": 0.009382716049382716,
2258
+ "loss": 0.0,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 41.78,
2263
+ "learning_rate": 0.009382716049382716,
2264
+ "loss": 0.0,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 41.89,
2269
+ "learning_rate": 0.009382716049382716,
2270
+ "loss": 0.0,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 42.0,
2275
+ "learning_rate": 0.009382716049382716,
2276
+ "loss": 0.0,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 42.11,
2281
+ "learning_rate": 0.009382716049382716,
2282
+ "loss": 0.0,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 42.22,
2287
+ "learning_rate": 0.009382716049382716,
2288
+ "loss": 0.0,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 42.33,
2293
+ "learning_rate": 0.009382716049382716,
2294
+ "loss": 0.0,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 42.44,
2299
+ "learning_rate": 0.009382716049382716,
2300
+ "loss": 0.0,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 42.56,
2305
+ "learning_rate": 0.009382716049382716,
2306
+ "loss": 0.0,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 42.67,
2311
+ "learning_rate": 0.009382716049382716,
2312
+ "loss": 0.0,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 42.78,
2317
+ "learning_rate": 0.009382716049382716,
2318
+ "loss": 0.0,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 42.89,
2323
+ "learning_rate": 0.009382716049382716,
2324
+ "loss": 0.0,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 43.0,
2329
+ "learning_rate": 0.009382716049382716,
2330
+ "loss": 0.0,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 43.11,
2335
+ "learning_rate": 0.009382716049382716,
2336
+ "loss": 0.0,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 43.22,
2341
+ "learning_rate": 0.009382716049382716,
2342
+ "loss": 0.0,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 43.33,
2347
+ "learning_rate": 0.009382716049382716,
2348
+ "loss": 0.0,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 43.44,
2353
+ "learning_rate": 0.009382716049382716,
2354
+ "loss": 0.0,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 43.56,
2359
+ "learning_rate": 0.009382716049382716,
2360
+ "loss": 0.0,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 43.67,
2365
+ "learning_rate": 0.009382716049382716,
2366
+ "loss": 0.0,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 43.78,
2371
+ "learning_rate": 0.009382716049382716,
2372
+ "loss": 0.0,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 43.89,
2377
+ "learning_rate": 0.009382716049382716,
2378
+ "loss": 0.0,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 44.0,
2383
+ "learning_rate": 0.009382716049382716,
2384
+ "loss": 0.0,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 44.11,
2389
+ "learning_rate": 0.009382716049382716,
2390
+ "loss": 0.0,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 44.22,
2395
+ "learning_rate": 0.009382716049382716,
2396
+ "loss": 0.0,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 44.33,
2401
+ "learning_rate": 0.009382716049382716,
2402
+ "loss": 0.0,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 44.44,
2407
+ "learning_rate": 0.009382716049382716,
2408
+ "loss": 0.0,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 44.56,
2413
+ "learning_rate": 0.009382716049382716,
2414
+ "loss": 0.0,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 44.67,
2419
+ "learning_rate": 0.009382716049382716,
2420
+ "loss": 0.0,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 44.78,
2425
+ "learning_rate": 0.009382716049382716,
2426
+ "loss": 0.0,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 44.89,
2431
+ "learning_rate": 0.009382716049382716,
2432
+ "loss": 0.0,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 45.0,
2437
+ "learning_rate": 0.009382716049382716,
2438
+ "loss": 0.0,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 45.11,
2443
+ "learning_rate": 0.009382716049382716,
2444
+ "loss": 0.0,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 45.22,
2449
+ "learning_rate": 0.009382716049382716,
2450
+ "loss": 0.0,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 45.33,
2455
+ "learning_rate": 0.009382716049382716,
2456
+ "loss": 0.0,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 45.44,
2461
+ "learning_rate": 0.009382716049382716,
2462
+ "loss": 0.0,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 45.56,
2467
+ "learning_rate": 0.009382716049382716,
2468
+ "loss": 0.0,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 45.67,
2473
+ "learning_rate": 0.009382716049382716,
2474
+ "loss": 0.0,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 45.78,
2479
+ "learning_rate": 0.009382716049382716,
2480
+ "loss": 0.0,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 45.89,
2485
+ "learning_rate": 0.009382716049382716,
2486
+ "loss": 0.0,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 46.0,
2491
+ "learning_rate": 0.009382716049382716,
2492
+ "loss": 0.0,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 46.11,
2497
+ "learning_rate": 0.009382716049382716,
2498
+ "loss": 0.0,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 46.22,
2503
+ "learning_rate": 0.009382716049382716,
2504
+ "loss": 0.0,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 46.33,
2509
+ "learning_rate": 0.009382716049382716,
2510
+ "loss": 0.0,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 46.44,
2515
+ "learning_rate": 0.009382716049382716,
2516
+ "loss": 0.0,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 46.56,
2521
+ "learning_rate": 0.009382716049382716,
2522
+ "loss": 0.0,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 46.67,
2527
+ "learning_rate": 0.009382716049382716,
2528
+ "loss": 0.0,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 46.78,
2533
+ "learning_rate": 0.009382716049382716,
2534
+ "loss": 0.0,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 46.89,
2539
+ "learning_rate": 0.009382716049382716,
2540
+ "loss": 0.0,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 47.0,
2545
+ "learning_rate": 0.009382716049382716,
2546
+ "loss": 0.0,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 47.11,
2551
+ "learning_rate": 0.009382716049382716,
2552
+ "loss": 0.0,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 47.22,
2557
+ "learning_rate": 0.009382716049382716,
2558
+ "loss": 0.0,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 47.33,
2563
+ "learning_rate": 0.009382716049382716,
2564
+ "loss": 0.0,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 47.44,
2569
+ "learning_rate": 0.009382716049382716,
2570
+ "loss": 0.0,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 47.56,
2575
+ "learning_rate": 0.009382716049382716,
2576
+ "loss": 0.0,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 47.67,
2581
+ "learning_rate": 0.009382716049382716,
2582
+ "loss": 0.0,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 47.78,
2587
+ "learning_rate": 0.009382716049382716,
2588
+ "loss": 0.0,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 47.89,
2593
+ "learning_rate": 0.009382716049382716,
2594
+ "loss": 0.0,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 48.0,
2599
+ "learning_rate": 0.009382716049382716,
2600
+ "loss": 0.0,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 48.11,
2605
+ "learning_rate": 0.009382716049382716,
2606
+ "loss": 0.0,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 48.22,
2611
+ "learning_rate": 0.009382716049382716,
2612
+ "loss": 0.0,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 48.33,
2617
+ "learning_rate": 0.009382716049382716,
2618
+ "loss": 0.0,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 48.44,
2623
+ "learning_rate": 0.009382716049382716,
2624
+ "loss": 0.0,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 48.56,
2629
+ "learning_rate": 0.009382716049382716,
2630
+ "loss": 0.0,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 48.67,
2635
+ "learning_rate": 0.009382716049382716,
2636
+ "loss": 0.0,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 48.78,
2641
+ "learning_rate": 0.009382716049382716,
2642
+ "loss": 0.0,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 48.89,
2647
+ "learning_rate": 0.009382716049382716,
2648
+ "loss": 0.0,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 49.0,
2653
+ "learning_rate": 0.009382716049382716,
2654
+ "loss": 0.0,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 49.11,
2659
+ "learning_rate": 0.009382716049382716,
2660
+ "loss": 0.0,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 49.22,
2665
+ "learning_rate": 0.009382716049382716,
2666
+ "loss": 0.0,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 49.33,
2671
+ "learning_rate": 0.009382716049382716,
2672
+ "loss": 0.0,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 49.44,
2677
+ "learning_rate": 0.009382716049382716,
2678
+ "loss": 0.0,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 49.56,
2683
+ "learning_rate": 0.009382716049382716,
2684
+ "loss": 0.0,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 49.67,
2689
+ "learning_rate": 0.009382716049382716,
2690
+ "loss": 0.0,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 49.78,
2695
+ "learning_rate": 0.009382716049382716,
2696
+ "loss": 0.0,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 49.89,
2701
+ "learning_rate": 0.009382716049382716,
2702
+ "loss": 0.0,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 50.0,
2707
+ "learning_rate": 0.009382716049382716,
2708
+ "loss": 0.0,
2709
+ "step": 450
2710
+ }
2711
+ ],
2712
+ "logging_steps": 1,
2713
+ "max_steps": 450,
2714
+ "num_input_tokens_seen": 0,
2715
+ "num_train_epochs": 50,
2716
+ "save_steps": 500,
2717
+ "total_flos": 3.7170305826816e+16,
2718
+ "train_batch_size": 2,
2719
+ "trial_name": null,
2720
+ "trial_params": null
2721
+ }
checkpoint-450/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf8250693281dc4d7b539c4eb47772eaa693f8d0810cebd330cac5a8dcfa98f7
3
+ size 4728
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "HuggingFaceH4/zephyr-7b-beta",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 2,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 10000.0,
21
+ "sliding_window": 4096,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.36.1",
25
+ "use_cache": true,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.1"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5316c3c23e02e407a30dcc6db9e598c5379099b7caf5e33bbe839239dca565f0
3
+ size 4943162240
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34966c1a73ce3dc7501a6309f51d7d7556e599344ba987ab9dee2382e364232b
3
+ size 4999819232
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6afc24cb3fb9a67c6d12f45f6d0523b076b4cabcfecb62a6e7b64f91bb813ad6
3
+ size 4540516256
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
37
+ "clean_up_tokenization_spaces": false,
38
+ "eos_token": "</s>",
39
+ "legacy": true,
40
+ "model_max_length": 1000000000000000019884624838656,
41
+ "pad_token": "</s>",
42
+ "sp_model_kwargs": {},
43
+ "spaces_between_special_tokens": false,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "truncation_side": "left",
46
+ "unk_token": "<unk>",
47
+ "use_default_system_prompt": true
48
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf8250693281dc4d7b539c4eb47772eaa693f8d0810cebd330cac5a8dcfa98f7
3
+ size 4728
training_params.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "HuggingFaceH4/zephyr-7b-beta",
3
+ "project_name": "/tmp/model",
4
+ "data_path": "pratikthakkar007/autotrain-data-autotrain-wuiwp-o6gob",
5
+ "train_split": "train",
6
+ "valid_split": null,
7
+ "add_eos_token": true,
8
+ "block_size": 1024,
9
+ "model_max_length": 2048,
10
+ "trainer": "default",
11
+ "use_flash_attention_2": false,
12
+ "log": "none",
13
+ "disable_gradient_checkpointing": false,
14
+ "logging_steps": -1,
15
+ "evaluation_strategy": "epoch",
16
+ "save_total_limit": 1,
17
+ "save_strategy": "epoch",
18
+ "auto_find_batch_size": true,
19
+ "mixed_precision": "fp16",
20
+ "lr": 0.01,
21
+ "epochs": 50,
22
+ "batch_size": 2,
23
+ "warmup_ratio": 0.1,
24
+ "gradient_accumulation": 1,
25
+ "optimizer": "adamw_torch",
26
+ "scheduler": "linear",
27
+ "weight_decay": 0.0,
28
+ "max_grad_norm": 1.0,
29
+ "seed": 42,
30
+ "apply_chat_template": false,
31
+ "quantization": "int4",
32
+ "target_modules": "",
33
+ "merge_adapter": true,
34
+ "peft": true,
35
+ "lora_r": 16,
36
+ "lora_alpha": 32,
37
+ "lora_dropout": 0.05,
38
+ "model_ref": null,
39
+ "dpo_beta": 0.1,
40
+ "prompt_text_column": "autotrain_prompt",
41
+ "text_column": "autotrain_text",
42
+ "rejected_text_column": "autotrain_rejected_text",
43
+ "push_to_hub": true,
44
+ "repo_id": "pratikthakkar007/autotrain-wuiwp-o6gob",
45
+ "username": "pratikthakkar007"
46
+ }