--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - anno_ctr metrics: - precision - recall - f1 - accuracy model-index: - name: annoctr_bert_uncased results: - task: name: Token Classification type: token-classification dataset: name: anno_ctr type: anno_ctr config: all_tags split: test args: all_tags metrics: - name: Precision type: precision value: 0.7928388746803069 - name: Recall type: recall value: 0.7809920945182869 - name: F1 type: f1 value: 0.7868708971553611 - name: Accuracy type: accuracy value: 0.936522196415268 --- # annoctr_bert_uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the anno_ctr dataset. It achieves the following results on the evaluation set: - Loss: 0.3322 - Precision: 0.7928 - Recall: 0.7810 - F1: 0.7869 - Accuracy: 0.9365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.54 | 1.0 | 474 | 0.3452 | 0.6983 | 0.6601 | 0.6786 | 0.9137 | | 0.3013 | 2.0 | 948 | 0.3466 | 0.7774 | 0.7018 | 0.7376 | 0.9240 | | 0.0392 | 3.0 | 1422 | 0.3071 | 0.7851 | 0.7517 | 0.7680 | 0.9303 | | 0.5695 | 4.0 | 1896 | 0.2941 | 0.7810 | 0.7617 | 0.7712 | 0.9334 | | 0.0021 | 5.0 | 2370 | 0.3109 | 0.7928 | 0.7720 | 0.7823 | 0.9351 | | 0.0419 | 6.0 | 2844 | 0.3020 | 0.7772 | 0.7796 | 0.7784 | 0.9341 | | 0.2979 | 7.0 | 3318 | 0.3169 | 0.8019 | 0.7814 | 0.7915 | 0.9374 | | 0.0017 | 8.0 | 3792 | 0.3260 | 0.7972 | 0.7778 | 0.7874 | 0.9365 | | 0.0166 | 9.0 | 4266 | 0.3349 | 0.7935 | 0.7789 | 0.7861 | 0.9364 | | 0.0685 | 10.0 | 4740 | 0.3322 | 0.7928 | 0.7810 | 0.7869 | 0.9365 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1