leaderboard-pr-bot commited on
Commit
58696e2
·
verified ·
1 Parent(s): 97994d6

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +109 -1
README.md CHANGED
@@ -1,5 +1,100 @@
1
  ---
2
  license: llama3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
  # princeton_nlp/Llama-3-8B-ProLong-64k-Base
5
 
@@ -220,4 +315,17 @@ We conduct supervised fine-tuning (SFT) on our base long-context model. In our p
220
  | Scheduling | 5% warmup, cosine decay till 10% peak learning rate |
221
  | Total #tokens | 1B |
222
 
223
- - Synthetic data: we also experiment with several strategies to generate long, synthetic chat data, but they have not yet helped to improve upon our UltraChat-fine-tuned chat models. The synthetic data strategies we tried include (1) using a paragraph of a long book/repo to generate question-answer pairs; (2) using hierarchical methods to summarize a long book; (3) turning the previous synthetic long QA data into a RAG format.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama3
3
+ model-index:
4
+ - name: Llama-3-8B-ProLong-64k-Base
5
+ results:
6
+ - task:
7
+ type: text-generation
8
+ name: Text Generation
9
+ dataset:
10
+ name: IFEval (0-Shot)
11
+ type: HuggingFaceH4/ifeval
12
+ args:
13
+ num_few_shot: 0
14
+ metrics:
15
+ - type: inst_level_strict_acc and prompt_level_strict_acc
16
+ value: 12.49
17
+ name: strict accuracy
18
+ source:
19
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
20
+ name: Open LLM Leaderboard
21
+ - task:
22
+ type: text-generation
23
+ name: Text Generation
24
+ dataset:
25
+ name: BBH (3-Shot)
26
+ type: BBH
27
+ args:
28
+ num_few_shot: 3
29
+ metrics:
30
+ - type: acc_norm
31
+ value: 25.02
32
+ name: normalized accuracy
33
+ source:
34
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
35
+ name: Open LLM Leaderboard
36
+ - task:
37
+ type: text-generation
38
+ name: Text Generation
39
+ dataset:
40
+ name: MATH Lvl 5 (4-Shot)
41
+ type: hendrycks/competition_math
42
+ args:
43
+ num_few_shot: 4
44
+ metrics:
45
+ - type: exact_match
46
+ value: 5.82
47
+ name: exact match
48
+ source:
49
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
50
+ name: Open LLM Leaderboard
51
+ - task:
52
+ type: text-generation
53
+ name: Text Generation
54
+ dataset:
55
+ name: GPQA (0-shot)
56
+ type: Idavidrein/gpqa
57
+ args:
58
+ num_few_shot: 0
59
+ metrics:
60
+ - type: acc_norm
61
+ value: 4.81
62
+ name: acc_norm
63
+ source:
64
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
65
+ name: Open LLM Leaderboard
66
+ - task:
67
+ type: text-generation
68
+ name: Text Generation
69
+ dataset:
70
+ name: MuSR (0-shot)
71
+ type: TAUR-Lab/MuSR
72
+ args:
73
+ num_few_shot: 0
74
+ metrics:
75
+ - type: acc_norm
76
+ value: 9.1
77
+ name: acc_norm
78
+ source:
79
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
80
+ name: Open LLM Leaderboard
81
+ - task:
82
+ type: text-generation
83
+ name: Text Generation
84
+ dataset:
85
+ name: MMLU-PRO (5-shot)
86
+ type: TIGER-Lab/MMLU-Pro
87
+ config: main
88
+ split: test
89
+ args:
90
+ num_few_shot: 5
91
+ metrics:
92
+ - type: acc
93
+ value: 25.4
94
+ name: accuracy
95
+ source:
96
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
97
+ name: Open LLM Leaderboard
98
  ---
99
  # princeton_nlp/Llama-3-8B-ProLong-64k-Base
100
 
 
315
  | Scheduling | 5% warmup, cosine decay till 10% peak learning rate |
316
  | Total #tokens | 1B |
317
 
318
+ - Synthetic data: we also experiment with several strategies to generate long, synthetic chat data, but they have not yet helped to improve upon our UltraChat-fine-tuned chat models. The synthetic data strategies we tried include (1) using a paragraph of a long book/repo to generate question-answer pairs; (2) using hierarchical methods to summarize a long book; (3) turning the previous synthetic long QA data into a RAG format.
319
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
320
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Llama-3-8B-ProLong-64k-Base)
321
+
322
+ | Metric |Value|
323
+ |-------------------|----:|
324
+ |Avg. |13.77|
325
+ |IFEval (0-Shot) |12.49|
326
+ |BBH (3-Shot) |25.02|
327
+ |MATH Lvl 5 (4-Shot)| 5.82|
328
+ |GPQA (0-shot) | 4.81|
329
+ |MuSR (0-shot) | 9.10|
330
+ |MMLU-PRO (5-shot) |25.40|
331
+