File size: 1,681 Bytes
1a75e57
693f340
 
 
 
 
 
 
 
 
1a75e57
 
693f340
 
1a75e57
693f340
 
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
1a75e57
693f340
 
 
 
 
 
 
 
 
 
 
 
 
 
1a75e57
693f340
1a75e57
 
 
693f340
1a75e57
693f340
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma2-ultrafeedback-armorm/dataset_dict/
model-index:
- name: gemma2-9b-dpo-beta-0.01-lr-5e-7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None)
# gemma2-9b-dpo-beta-0.01-lr-5e-7

This model is a fine-tuned version of [/scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it](https://huggingface.co//scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it) on the /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma2-ultrafeedback-armorm/dataset_dict/ dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.42.4
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1