pritamdeka commited on
Commit
6d87c82
1 Parent(s): 2acb4d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -6
README.md CHANGED
@@ -7,9 +7,9 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
@@ -27,7 +27,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -122,4 +122,17 @@ SentenceTransformer(
122
 
123
  ## Citing & Authors
124
 
125
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  - transformers
8
  ---
9
 
10
+ # {pritamdeka/BioBERT-mnli-snli-scinli-stsb}
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been trained over the SNLI, MNLI, SCINLI and STSB datasets for providing robust sentence embeddings.
13
 
14
  <!--- Describe your model here -->
15
 
 
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
+ model = SentenceTransformer('{pritamdeka/BioBERT-mnli-snli-scinli-stsb}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('{pritamdeka/BioBERT-mnli-snli-scinli-stsb}')
57
+ model = AutoModel.from_pretrained('{pritamdeka/BioBERT-mnli-snli-scinli-stsb}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
122
 
123
  ## Citing & Authors
124
 
125
+ <!--- Describe where people can find more information -->
126
+
127
+ If you use the model kindly cite the following work
128
+
129
+ ```
130
+ @inproceedings{deka2022evidence,
131
+ title={Evidence Extraction to Validate Medical Claims in Fake News Detection},
132
+ author={Deka, Pritam and Jurek-Loughrey, Anna and others},
133
+ booktitle={International Conference on Health Information Science},
134
+ pages={3--15},
135
+ year={2022},
136
+ organization={Springer}
137
+ }
138
+ ```