pritamdeka commited on
Commit
1cf4bd8
·
1 Parent(s): 122e499

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -27,7 +27,7 @@ More information needed
27
  The model can be used for NLI tasks related to biomedical data and even be adapted to fact-checking tasks. It can be used from the Huggingface pipeline method as follows:
28
 
29
 
30
- ```
31
  from transformers import TextClassificationPipeline, AutoModel, AutoTokenizer, AutoModelForSequenceClassification
32
  model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI", num_labels=3, id2label = {1: 'entailment', 0: 'contradiction',2:'neutral'})
33
  tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI")
@@ -39,7 +39,7 @@ pipe(['ALDH1 expression is associated with better breast cancer outcomes',
39
 
40
  The output for the above will be:
41
 
42
- ```
43
  [[{'label': 'contradiction', 'score': 0.10193759202957153},
44
  {'label': 'entailment', 'score': 0.2933262586593628},
45
  {'label': 'neutral', 'score': 0.6047361493110657}],
 
27
  The model can be used for NLI tasks related to biomedical data and even be adapted to fact-checking tasks. It can be used from the Huggingface pipeline method as follows:
28
 
29
 
30
+ ```python
31
  from transformers import TextClassificationPipeline, AutoModel, AutoTokenizer, AutoModelForSequenceClassification
32
  model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI", num_labels=3, id2label = {1: 'entailment', 0: 'contradiction',2:'neutral'})
33
  tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI")
 
39
 
40
  The output for the above will be:
41
 
42
+ ```python
43
  [[{'label': 'contradiction', 'score': 0.10193759202957153},
44
  {'label': 'entailment', 'score': 0.2933262586593628},
45
  {'label': 'neutral', 'score': 0.6047361493110657}],