File size: 2,162 Bytes
790803c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# best_model
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2833
- Accuracy: 0.8942
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3604 | 0.14 | 5000 | 0.3162 | 0.8821 |
| 0.3326 | 0.29 | 10000 | 0.3112 | 0.8843 |
| 0.3293 | 0.43 | 15000 | 0.3044 | 0.8870 |
| 0.3246 | 0.58 | 20000 | 0.3040 | 0.8871 |
| 0.32 | 0.72 | 25000 | 0.2969 | 0.8888 |
| 0.3143 | 0.87 | 30000 | 0.2929 | 0.8903 |
| 0.3095 | 1.01 | 35000 | 0.2917 | 0.8899 |
| 0.2844 | 1.16 | 40000 | 0.2957 | 0.8886 |
| 0.2778 | 1.3 | 45000 | 0.2943 | 0.8906 |
| 0.2779 | 1.45 | 50000 | 0.2890 | 0.8935 |
| 0.2752 | 1.59 | 55000 | 0.2881 | 0.8919 |
| 0.2736 | 1.74 | 60000 | 0.2835 | 0.8944 |
| 0.2725 | 1.88 | 65000 | 0.2833 | 0.8942 |
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|