--- license: mit tags: - generated_from_trainer metrics: - accuracy widget: - text: SAMPLE 32,441 archived appendix samples fixed in formalin and embedded in paraffin and tested for the presence of abnormal prion protein (PrP). base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext model-index: - name: PubMedBert-PubMed200kRCT results: [] --- # PubMedBert-PubMed200kRCT This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [PubMed200kRCT](https://github.com/Franck-Dernoncourt/pubmed-rct/tree/master/PubMed_200k_RCT) dataset. It achieves the following results on the evaluation set: - Loss: 0.2833 - Accuracy: 0.8942 ## Model description More information needed ## Intended uses & limitations The model can be used for text classification tasks of Randomized Controlled Trials that does not have any structure. The text can be classified as one of the following: * BACKGROUND * CONCLUSIONS * METHODS * OBJECTIVE * RESULTS The model can be directly used like this: ```python from transformers import TextClassificationPipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBert-PubMed200kRCT") tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBert-PubMed200kRCT") pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) pipe("Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity.") ``` Results will be shown as follows: ```python [[{'label': 'BACKGROUND', 'score': 0.0028450002428144217}, {'label': 'CONCLUSIONS', 'score': 0.2581048607826233}, {'label': 'METHODS', 'score': 0.015086210332810879}, {'label': 'OBJECTIVE', 'score': 0.0016815993003547192}, {'label': 'RESULTS', 'score': 0.7222822904586792}]] ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3604 | 0.14 | 5000 | 0.3162 | 0.8821 | | 0.3326 | 0.29 | 10000 | 0.3112 | 0.8843 | | 0.3293 | 0.43 | 15000 | 0.3044 | 0.8870 | | 0.3246 | 0.58 | 20000 | 0.3040 | 0.8871 | | 0.32 | 0.72 | 25000 | 0.2969 | 0.8888 | | 0.3143 | 0.87 | 30000 | 0.2929 | 0.8903 | | 0.3095 | 1.01 | 35000 | 0.2917 | 0.8899 | | 0.2844 | 1.16 | 40000 | 0.2957 | 0.8886 | | 0.2778 | 1.3 | 45000 | 0.2943 | 0.8906 | | 0.2779 | 1.45 | 50000 | 0.2890 | 0.8935 | | 0.2752 | 1.59 | 55000 | 0.2881 | 0.8919 | | 0.2736 | 1.74 | 60000 | 0.2835 | 0.8944 | | 0.2725 | 1.88 | 65000 | 0.2833 | 0.8942 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6 ## Citing & Authors If you use the model kindly cite the following work ``` @inproceedings{deka2022evidence, title={Evidence Extraction to Validate Medical Claims in Fake News Detection}, author={Deka, Pritam and Jurek-Loughrey, Anna and others}, booktitle={International Conference on Health Information Science}, pages={3--15}, year={2022}, organization={Springer} } ```