pritamdeka
commited on
Commit
·
7196857
1
Parent(s):
d03bd5c
Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
-
# {
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
@@ -27,7 +27,7 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer('{
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('{
|
57 |
-
model = AutoModel.from_pretrained('{
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -123,4 +123,16 @@ SentenceTransformer(
|
|
123 |
|
124 |
## Citing & Authors
|
125 |
|
126 |
-
<!--- Describe where people can find more information -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
+
# {pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
+
model = SentenceTransformer('{pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}')
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('{pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}')
|
57 |
+
model = AutoModel.from_pretrained('{pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}')
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
123 |
|
124 |
## Citing & Authors
|
125 |
|
126 |
+
<!--- Describe where people can find more information -->
|
127 |
+
|
128 |
+
To cite the wonderful work of sentence transformers use the citation given below.
|
129 |
+
```
|
130 |
+
|
131 |
+
@article{reimers2019sentence,
|
132 |
+
title={Sentence-bert: Sentence embeddings using siamese bert-networks},
|
133 |
+
author={Reimers, Nils and Gurevych, Iryna},
|
134 |
+
journal={arXiv preprint arXiv:1908.10084},
|
135 |
+
year={2019}
|
136 |
+
}
|
137 |
+
|
138 |
+
```
|