pritamdeka commited on
Commit
7196857
·
1 Parent(s): d03bd5c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -5
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
@@ -27,7 +27,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -123,4 +123,16 @@ SentenceTransformer(
123
 
124
  ## Citing & Authors
125
 
126
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  - transformers
8
  ---
9
 
10
+ # {pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
 
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
+ model = SentenceTransformer('{pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('{pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}')
57
+ model = AutoModel.from_pretrained('{pritamdeka/S-Biomed-Roberta-snli-multinli-stsb}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
123
 
124
  ## Citing & Authors
125
 
126
+ <!--- Describe where people can find more information -->
127
+
128
+ To cite the wonderful work of sentence transformers use the citation given below.
129
+ ```
130
+
131
+ @article{reimers2019sentence,
132
+ title={Sentence-bert: Sentence embeddings using siamese bert-networks},
133
+ author={Reimers, Nils and Gurevych, Iryna},
134
+ journal={arXiv preprint arXiv:1908.10084},
135
+ year={2019}
136
+ }
137
+
138
+ ```