prithivMLmods commited on
Commit
fbd5f2a
1 Parent(s): 38df2ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -1
README.md CHANGED
@@ -17,7 +17,10 @@ tags:
17
  - trl
18
  ---
19
 
20
- ### **Llama-Chat-Summary-3.2-3B**
 
 
 
21
 
22
  | **File Name** | **Size** | **Description** | **Upload Status** |
23
  |--------------------------------------------|------------------|--------------------------------------------------|-------------------|
@@ -32,4 +35,92 @@ tags:
32
  | `tokenizer.json` | 17.2 MB | Pre-trained tokenizer file. | Uploaded (LFS) |
33
  | `tokenizer_config.json` | 57.4 kB | Configuration file for the tokenizer. | Uploaded |
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ---
 
17
  - trl
18
  ---
19
 
20
+ ### **Llama-Chat-Summary-3.2-3B: Context-Aware Summarization Model**
21
+
22
+ **Llama-Chat-Summary-3.2-3B** is a fine-tuned model designed for generating **context-aware summaries** of long conversational or text-based inputs. Built on the **meta-llama/Llama-3.2-3B-Instruct** foundation, this model is optimized to process structured and unstructured conversational data for summarization tasks.
23
+
24
 
25
  | **File Name** | **Size** | **Description** | **Upload Status** |
26
  |--------------------------------------------|------------------|--------------------------------------------------|-------------------|
 
35
  | `tokenizer.json` | 17.2 MB | Pre-trained tokenizer file. | Uploaded (LFS) |
36
  | `tokenizer_config.json` | 57.4 kB | Configuration file for the tokenizer. | Uploaded |
37
 
38
+ ### **Key Features**
39
+
40
+ 1. **Conversation Summarization:**
41
+ - Generates concise and meaningful summaries of long chats, discussions, or threads.
42
+
43
+ 2. **Context Preservation:**
44
+ - Maintains critical points, ensuring important details aren't omitted.
45
+
46
+ 3. **Text Summarization:**
47
+ - Works beyond chats; supports summarizing articles, documents, or reports.
48
+
49
+ 4. **Fine-Tuned Efficiency:**
50
+ - Trained with *Context-Based-Chat-Summary-Plus* dataset for accurate summarization of chat and conversational data.
51
+
52
+ ---
53
+ ### **Training Details**
54
+
55
+ - **Base Model:** [meta-llama/Llama-3.2-3B-Instruct](#)
56
+ - **Fine-Tuning Dataset:** [prithivMLmods/Context-Based-Chat-Summary-Plus](#)
57
+ - Contains **98.4k** structured and unstructured conversations, summaries, and contextual inputs for robust training.
58
+
59
+ ---
60
+ ### **Applications**
61
+
62
+ 1. **Customer Support Logs:**
63
+ - Summarize chat logs or support tickets for insights and reporting.
64
+
65
+ 2. **Meeting Notes:**
66
+ - Generate concise summaries of meeting transcripts.
67
+
68
+ 3. **Document Summarization:**
69
+ - Create short summaries for lengthy reports or articles.
70
+
71
+ 4. **Content Generation Pipelines:**
72
+ - Automate summarization for newsletters, blogs, or email digests.
73
+
74
+ 5. **Context Extraction for AI Systems:**
75
+ - Preprocess chat or conversation logs for downstream AI applications.
76
+
77
+ ---
78
+
79
+ ### **Usage**
80
+
81
+ #### **Load the Model**
82
+ ```python
83
+ from transformers import AutoModelForCausalLM, AutoTokenizer
84
+
85
+ model_name = "prithivMLmods/Llama-Chat-Summary-3.2-3B"
86
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
87
+ model = AutoModelForCausalLM.from_pretrained(model_name)
88
+ ```
89
+
90
+ ---
91
+
92
+ #### **Generate a Summary**
93
+ ```python
94
+ prompt = """
95
+ Summarize the following conversation:
96
+ User1: Hey, I need help with my order. It hasn't arrived yet.
97
+ User2: I'm sorry to hear that. Can you provide your order number?
98
+ User1: Sure, it's 12345.
99
+ User2: Let me check... It seems there was a delay. It should arrive tomorrow.
100
+ User1: Okay, thank you!
101
+ """
102
+
103
+ inputs = tokenizer(prompt, return_tensors="pt")
104
+ outputs = model.generate(**inputs, max_length=100, temperature=0.7)
105
+
106
+ summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
107
+ print("Summary:", summary)
108
+ ```
109
+
110
+ ---
111
+
112
+ ### **Expected Output**
113
+ **"The user reported a delayed order (12345), and support confirmed it will arrive tomorrow."**
114
+
115
+ ---
116
+
117
+ ### **Deployment Notes**
118
+
119
+ - **Serverless API:**
120
+ This model currently lacks sufficient usage for serverless endpoints. Use **dedicated endpoints** for deployment.
121
+
122
+ - **Performance Requirements:**
123
+ - GPU with sufficient memory (recommended for large models).
124
+ - Optimization techniques like quantization can improve efficiency for inference.
125
+
126
  ---