prithivMLmods commited on
Commit
5cf5cc8
·
verified ·
1 Parent(s): 9715b43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -11,4 +11,68 @@ tags:
11
  - Qwen
12
  - 5M-Logits
13
  - trl
14
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - Qwen
12
  - 5M-Logits
13
  - trl
14
+ ---
15
+ # **Megatron-Corpus-14B-Exp**
16
+
17
+ Megatron-Corpus-14B-Exp is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. It has been fine-tuned on a synthetic dataset based on math corpus, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
18
+
19
+ ### **Key Improvements**
20
+ 1. **Advanced Reasoning & Logic**: Optimized for multi-step problem-solving, logical deduction, and contextual analysis.
21
+ 2. **Fine-Tuned Instruction Following**: Generates precise responses, structured outputs (e.g., JSON), and extended long-form text (8K+ tokens).
22
+ 3. **Greater Adaptability**: Excels in role-playing, multi-turn dialogues, and diverse system prompts.
23
+ 4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
24
+ 5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
25
+
26
+ ### **Quickstart with Transformers**
27
+
28
+ ```python
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer
30
+
31
+ model_name = "prithivMLmods/Megatron-Corpus-14B-Exp"
32
+
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ model_name,
35
+ torch_dtype="auto",
36
+ device_map="auto",
37
+ trust_remote_code=True
38
+ )
39
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
40
+
41
+ prompt = "Explain the concept of logical reasoning in AI."
42
+ messages = [
43
+ {"role": "system", "content": "You are an expert AI assistant specialized in reasoning and logic."},
44
+ {"role": "user", "content": prompt}
45
+ ]
46
+ text = tokenizer.apply_chat_template(
47
+ messages,
48
+ tokenize=False,
49
+ add_generation_prompt=True
50
+ )
51
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
52
+
53
+ generated_ids = model.generate(
54
+ **model_inputs,
55
+ max_new_tokens=512
56
+ )
57
+ generated_ids = [
58
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
59
+ ]
60
+
61
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
62
+ print(response)
63
+ ```
64
+
65
+ ### **Intended Use**
66
+ - **Advanced Logical & Analytical Reasoning**: Designed for problem-solving, multi-step deductions, and cognitive reasoning tasks.
67
+ - **Mathematical & Scientific Computation**: Supports theorem proving, complex calculations, and scientific knowledge retrieval.
68
+ - **Code Generation & Debugging**: Generates optimized code, detects errors, and improves programming workflows.
69
+ - **Structured Data Analysis**: Processes tables, JSON, and structured formats for data-centric applications.
70
+ - **Multilingual Reasoning & Translation**: High proficiency across **29+ languages** for international applications.
71
+ - **Extended Text Generation**: Capable of generating research papers, instructional guides, and in-depth reports.
72
+
73
+ ### **Limitations**
74
+ 1. **High Computational Requirements**: Due to its **14B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
75
+ 2. **Language-Specific Variability**: Performance may differ across supported languages, especially for low-resource languages.
76
+ 3. **Potential Error Accumulation**: Long-form text generation can introduce inconsistencies over extended outputs.
77
+ 4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
78
+ 5. **Prompt Sensitivity**: The quality of responses depends on the specificity and clarity of the input prompt.