prithivMLmods
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,9 @@ tags:
|
|
16 |
- Instruct
|
17 |
- QwQ
|
18 |
---
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
| **File Name** | **Size** | **Description** | **Upload Status** |
|
23 |
|----------------------------------------|----------------|-------------------------------------------------|--------------------|
|
@@ -34,3 +35,71 @@ tags:
|
|
34 |
| `tokenizer.json` | 11.4 MB | Serialized tokenizer data. | Uploaded (LFS) |
|
35 |
| `tokenizer_config.json` | 7.73 kB | Tokenizer configuration settings. | Uploaded |
|
36 |
| `vocab.json` | 2.78 MB | Vocabulary file for the tokenizer. | Uploaded |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
- Instruct
|
17 |
- QwQ
|
18 |
---
|
19 |
+
### **QwQ-LCoT-3B-Instruct Model Card**
|
20 |
|
21 |
+
The **QwQ-LCoT-3B-Instruct** model is a lightweight, instruction-tuned language model designed for complex reasoning and explanation tasks. It is fine-tuned on the **Qwen2.5-3B-Instruct** base model using the **QwQ-LongCoT-130K** dataset, focusing on **long-chain-of-thought (LCoT)** reasoning for enhanced logical comprehension and detailed output generation.
|
22 |
|
23 |
| **File Name** | **Size** | **Description** | **Upload Status** |
|
24 |
|----------------------------------------|----------------|-------------------------------------------------|--------------------|
|
|
|
35 |
| `tokenizer.json` | 11.4 MB | Serialized tokenizer data. | Uploaded (LFS) |
|
36 |
| `tokenizer_config.json` | 7.73 kB | Tokenizer configuration settings. | Uploaded |
|
37 |
| `vocab.json` | 2.78 MB | Vocabulary file for the tokenizer. | Uploaded |
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
### **Key Features:**
|
42 |
+
|
43 |
+
1. **Long Chain-of-Thought Reasoning:**
|
44 |
+
- Specifically designed to generate comprehensive, step-by-step explanations for complex queries.
|
45 |
+
|
46 |
+
2. **Lightweight and Efficient:**
|
47 |
+
- With only 3 billion parameters, it is optimized for systems with limited computational resources without compromising reasoning capabilities.
|
48 |
+
|
49 |
+
3. **Instruction Optimization:**
|
50 |
+
- Fine-tuned to follow prompts and provide concise, actionable, and structured responses.
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
### **Training Details:**
|
55 |
+
|
56 |
+
- **Base Model:** [Qwen2.5-3B-Instruct](#)
|
57 |
+
- **Dataset:** [amphora/QwQ-LongCoT-130K](#)
|
58 |
+
- Comprising 133,000 annotated samples focusing on logical tasks and structured thinking.
|
59 |
+
---
|
60 |
+
|
61 |
+
### **Capabilities:**
|
62 |
+
|
63 |
+
1. **Text Generation:**
|
64 |
+
- Provides detailed, structured, and logical text outputs tailored to user prompts.
|
65 |
+
|
66 |
+
2. **Reasoning Tasks:**
|
67 |
+
- Solves step-by-step problems in math, logic, and science.
|
68 |
+
|
69 |
+
3. **Educational Assistance:**
|
70 |
+
- Generates coherent explanations for academic and research purposes.
|
71 |
+
|
72 |
+
4. **Dialogue and Summarization:**
|
73 |
+
- Handles conversational queries and summarizes long documents effectively.
|
74 |
+
|
75 |
+
---
|
76 |
+
|
77 |
+
### **Usage Instructions:**
|
78 |
+
|
79 |
+
1. **Setup:**
|
80 |
+
Download all model files and ensure compatibility with the Hugging Face Transformers library.
|
81 |
+
|
82 |
+
2. **Loading the Model:**
|
83 |
+
```python
|
84 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
85 |
+
|
86 |
+
model_name = "prithivMLmods/QwQ-LCoT-3B-Instruct"
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
89 |
+
```
|
90 |
+
|
91 |
+
3. **Generate Long-Chain Reasoning Outputs:**
|
92 |
+
```python
|
93 |
+
input_text = "Explain the process of photosynthesis step-by-step."
|
94 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
95 |
+
outputs = model.generate(**inputs, max_length=300, temperature=0.5)
|
96 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
97 |
+
```
|
98 |
+
|
99 |
+
4. **Customize Output Generation:**
|
100 |
+
Modify the `generation_config.json` file for different scenarios:
|
101 |
+
- **`temperature`**: Controls randomness (lower = deterministic, higher = creative).
|
102 |
+
- **`max_length`**: Sets response length.
|
103 |
+
- **`top_p`**: Adjusts sampling for diversity in outputs.
|
104 |
+
|
105 |
+
---
|