File size: 9,931 Bytes
5d81b2b 7ff4aff 3eecabc 7ff4aff 4af0eb2 7ff4aff ac00149 7ff4aff ac00149 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff e6ad0c0 3f5e2ad e6ad0c0 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 11a25a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
license: creativeml-openrail-m
datasets:
- prithivMLmods/Spam-Text-Detect-Analysis
language:
- en
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
library_name: transformers
---
### **SPAM DETECTION UNCASED [ SPAM / HAM ]**
This implementation leverages **BERT (Bidirectional Encoder Representations from Transformers)** for binary classification (Spam / Ham) using sequence classification. The model uses the **`prithivMLmods/Spam-Text-Detect-Analysis` dataset** and integrates **Weights & Biases (wandb)** for comprehensive experiment tracking.
---
### Summary of Uploaded Files:
| **File Name** | **Size** | **Description** | **Upload Status** |
|------------------------------------|-----------|-----------------------------------------------------|-------------------|
| `.gitattributes` | 1.52 kB | Tracks files stored with Git LFS. | Uploaded |
| `README.md` | 8.78 kB | Comprehensive documentation for the repository. | Updated |
| `config.json` | 727 Bytes | Configuration file related to the model settings. | Uploaded |
| `model.safetensors` | 438 MB | Model weights stored in safetensors format. | Uploaded (LFS) |
| `special_tokens_map.json` | 125 Bytes | Mapping of special tokens for tokenizer handling. | Uploaded |
| `tokenizer_config.json` | 1.24 kB | Tokenizer settings for initialization. | Uploaded |
| `vocab.txt` | 232 kB | Vocabulary file for tokenizer use. | Uploaded |
---
## **π οΈ Overview**
### **Core Details:**
- **Model:** BERT for sequence classification
Pre-trained Model: `bert-base-uncased`
- **Task:** Spam detection - Binary classification task (Spam vs Ham).
- **Metrics Tracked:**
- Accuracy
- Precision
- Recall
- F1 Score
- Evaluation loss
---
## **π Key Results**
Results were obtained using BERT and the provided training dataset:
- **Validation Accuracy:** **0.9937**
- **Precision:** **0.9931**
- **Recall:** **0.9597**
- **F1 Score:** **0.9761**
---
## **π Model Training Details**
### **Model Architecture:**
The model uses `bert-base-uncased` as the pre-trained backbone and is fine-tuned for the sequence classification task.
### **Training Parameters:**
- **Learning Rate:** 2e-5
- **Batch Size:** 16
- **Epochs:** 3
- **Loss:** Cross-Entropy
---
## Gradio Build
```python
import gradio as gr
import torch
from transformers import BertTokenizer, BertForSequenceClassification
# Load the pre-trained BERT model and tokenizer
MODEL_PATH = "prithivMLmods/Spam-Bert-Uncased"
tokenizer = BertTokenizer.from_pretrained(MODEL_PATH)
model = BertForSequenceClassification.from_pretrained(MODEL_PATH)
# Function to predict if a given text is Spam or Ham
def predict_spam(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
prediction = torch.argmax(logits, axis=-1).item()
# Map prediction to label
if prediction == 1:
return "Spam"
else:
return "Ham"
# Gradio UI - Input and Output components
inputs = gr.Textbox(label="Enter Text", placeholder="Type a message to check if it's Spam or Ham...")
outputs = gr.Label(label="Prediction")
# List of example inputs
examples = [
["Win $1000 gift cards now by clicking here!"],
["You have been selected for a lottery."],
["Hello, how was your day?"],
["Earn money without any effort. Click here."],
["Meeting tomorrow at 10 AM. Don't be late."],
["Claim your free prize now!"],
["Are we still on for dinner tonight?"],
["Exclusive offer just for you, act now!"],
["Let's catch up over coffee soon."],
["Congratulations, you've won a new car!"]
]
# Create the Gradio interface
gr_interface = gr.Interface(
fn=predict_spam,
inputs=inputs,
outputs=outputs,
examples=examples,
title="Spam Detection with BERT",
description="Type a message in the text box to check if it's Spam or Ham using a pre-trained BERT model."
)
# Launch the application
gr_interface.launch()
```
### Train Details
```python
# Import necessary libraries
from datasets import load_dataset, ClassLabel
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
import torch
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# Load dataset
dataset = load_dataset("prithivMLmods/Spam-Text-Detect-Analysis", split="train")
# Encode labels as integers
label_mapping = {"ham": 0, "spam": 1}
dataset = dataset.map(lambda x: {"label": label_mapping[x["Category"]]})
dataset = dataset.rename_column("Message", "text").remove_columns(["Category"])
# Convert label column to ClassLabel for stratification
class_label = ClassLabel(names=["ham", "spam"])
dataset = dataset.cast_column("label", class_label)
# Split into train and test
dataset = dataset.train_test_split(test_size=0.2, stratify_by_column="label")
train_dataset = dataset["train"]
test_dataset = dataset["test"]
# Load BERT tokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Tokenize the data
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
train_dataset = train_dataset.map(tokenize_function, batched=True)
test_dataset = test_dataset.map(tokenize_function, batched=True)
# Set format for PyTorch
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
test_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
# Load pre-trained BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define evaluation metric
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = torch.argmax(torch.tensor(predictions), dim=-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average="binary")
acc = accuracy_score(labels, predictions)
return {"accuracy": acc, "precision": precision, "recall": recall, "f1": f1}
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch", # Evaluate after every epoch
save_strategy="epoch", # Save checkpoint after every epoch
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
greater_is_better=True
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
compute_metrics=compute_metrics
)
# Train the model
trainer.train()
# Evaluate the model
results = trainer.evaluate()
print("Evaluation Results:", results)
# Save the trained model
model.save_pretrained("./saved_model")
tokenizer.save_pretrained("./saved_model")
# Load the model for inference
loaded_model = BertForSequenceClassification.from_pretrained("./saved_model").to(device)
loaded_tokenizer = BertTokenizer.from_pretrained("./saved_model")
# Test the model on a custom input
def predict(text):
inputs = loaded_tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()} # Move inputs to the same device as model
outputs = loaded_model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1).item()
return "Spam" if prediction == 1 else "Ham"
# Example test
example_text = "Congratulations! You've won a $1000 Walmart gift card. Click here to claim now."
print("Prediction:", predict(example_text))
```
## **π How to Train the Model**
1. **Clone Repository:**
```bash
git clone <repository-url>
cd <project-directory>
```
2. **Install Dependencies:**
Install all necessary dependencies.
```bash
pip install -r requirements.txt
```
or manually:
```bash
pip install transformers datasets wandb scikit-learn
```
3. **Train the Model:**
Assuming you have a script like `train.py`, run:
```python
from train import main
```
---
## **β¨ Weights & Biases Integration**
### Why Use wandb?
- **Monitor experiments in real time** via visualization.
- Log metrics such as loss, accuracy, precision, recall, and F1 score.
- Provides a history of past runs and their comparisons.
### Initialize Weights & Biases
Include this snippet in your training script:
```python
import wandb
wandb.init(project="spam-detection")
```
---
## π **Directory Structure**
The directory is organized to ensure scalability and clear separation of components:
```
project-directory/
β
βββ data/ # Dataset processing scripts
βββ wandb/ # Logged artifacts from wandb runs
βββ results/ # Save training and evaluation results
βββ model/ # Trained model checkpoints
βββ requirements.txt # List of dependencies
βββ train.py # Main script for training the model
```
---
## π Dataset Information
The training dataset comes from **Spam-Text-Detect-Analysis** available on Hugging Face:
- **Dataset Link:** [Spam Text Detection Dataset - Hugging Face](https://huggingface.co/datasets)
Dataset size:
- **5.57k entries**
--- |