File size: 17,625 Bytes
1852784 6ad9ae8 1852784 6ad9ae8 1c006ae 6ad9ae8 b2893b9 a32a5c1 b2893b9 6ad9ae8 a32a5c1 6ad9ae8 ab4e07e 6ad9ae8 ab4e07e 6ad9ae8 ab4e07e 6ad9ae8 ab4e07e 6ad9ae8 f9573c0 6ad9ae8 f9573c0 6ad9ae8 ab4e07e 6ad9ae8 3fe3e6c 6ad9ae8 ab4e07e 6ad9ae8 ab4e07e 6ad9ae8 20eab3a 3fe3e6c 20eab3a 6ad9ae8 20eab3a 6ad9ae8 20eab3a 6ad9ae8 20eab3a 6ad9ae8 20eab3a 6ad9ae8 20eab3a 6ad9ae8 20eab3a 6ad9ae8 8831159 6ad9ae8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
license: apache-2.0
language:
- en
datasets:
- ms_marco
tags:
- splade++
- document-expansion
- sparse representation
- bag-of-words
- passage-retrieval
- knowledge-distillation
- document encoder
pretty_name: Independent Implementation of SPLADE++ Model with some efficiency tweaks for Industry setting.
library_name: transformers
pipeline_tag: fill-mask
---
# Independent Implementation of SPLADE++ Model (`a.k.a splade-cocondenser* and family`) for Industry a setting.
--------------
This work stands on the shoulders of the robust researches [Naver's From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective paper](https://arxiv.org/pdf/2205.04733.pdf) and [Google's SparseEmbed](https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/79f16d3b3b948706d191a7fe6dd02abe516f5564.pdf).
Props to both the teams for such a robust work.
## Motivation:
SPLADE models are a fine balance between retrieval effectiveness (quality) and retrieval efficiency (latency and $), with that in mind we did **very minor retrieval efficiency tweaks** to make it more suitable for a industry setting.
*(Pure MLE folks should not conflate efficiency to model inference efficiency. Our main focus is on retrieval efficiency. Hereinafter efficiency is a short hand for retrieval efficiency unless explicitly qualified otherwise. Not that inference efficiency is not important, we will address that subsequently.)*
**TL;DR of Our attempt & results**
1. FLOPS tuning: Seperate **Seq lens and Severely restrictive token budget** doc(128) & query(24) NOT 256 unlike Official SPLADE++. Inspired from **SparseEmbed** (instead of 2 models for query & doc).
3. Init Weights: **MLM adapted on MS MARCO corpus**.
4. Achieves a modest yet competitive effectiveness **MRR@10 37.22** in ID data (& OOD) and a retrieval latency of - **47.27ms**. (multi-threaded) all On **Consumer grade-GPUs** with **only 5 negatives per query**.
4. For Industry setting: Effectiveness on custom domains needs more than just **Trading FLOPS for tiny gains** and The Premise "SPLADE++ are not well suited to mono-cpu retrieval" does not hold.
<img src="./ID.png" width=650 height=500/>
*Note: The paper refers to the best performing models as SPLADE++, hence for consistency we are reusing the same.*
[**JUMP TO "How to use" to try it out**](#htu) or continue for more details.
<br/>
## Why FLOPS is one of the key metrics for industry setting ?
While ONLY a empirical analysis on large sample make sense here is a spot checking - a qualitatively example to give you an idea. Our models achieve par competitive effectiveness with **~10% and ~100%, lesser tokens comparable SPLADE++ models including SoTA**.
(We will show Quantitative results in the next section.)
So, **by design "how to beat SoTA MRR?" was never our goal**, Instead "At what cost can we achieve an acceptable effectiveness i.e. MRR@10". Non-chalantly reducing lambda values (λQ,λD, see above table) will achieve a better MRR.
But Lower lambda values = Higher FLOPS = More tokens = Poorer efficiency. This is NOT desirable for a Industry setting.
<details>
**Ours**
```python
number of actual dimensions: 113
SPLADE BOW rep:
[('stress', 2.36), ('glass', 2.15), ('thermal', 2.06), ('pan', 1.83), ('glasses', 1.67), ('break', 1.47), ('crack', 1.47), ('heat', 1.45), ('warmth', 1.36), ('depression', 1.34), ('hotter', 1.23), ('hottest', 1.11), ('window', 1.11), ('hot', 1.1), ('area', 1.04), ('cause', 1.01), ('adjacent', 0.99), ('too', 0.94), ('created', 0.86), ('##pan', 0.84), ('phenomenon', 0.81), ('when', 0.78), ('temperature', 0.76), ('cracked', 0.75), ('factors', 0.74), ('windows', 0.72), ('create', 0.71), ('level', 0.7), ('formed', 0.61), ('stresses', 0.59), ('warm', 0.58), ('fracture', 0.57), ('adjoining', 0.56), ('areas', 0.56), ('nearby', 0.56), ('causes', 0.56), ('broken', 0.54), ('produced', 0.52), ('sash', 0.51), ('if', 0.51), ('breaks', 0.49), ('is', 0.49), ('effect', 0.45), ('heated', 0.44), ('process', 0.42), ('breaking', 0.42), ('one', 0.4), ('mirror', 0.39), ('factor', 0.38), ('shatter', 0.38), ('formation', 0.37), ('mathias', 0.37), ('damage', 0.36), ('cracking', 0.35), ('climate', 0.35), ('ceramic', 0.34), ('reaction', 0.34), ('steam', 0.33), ('reflection', 0.33), ('generated', 0.33), ('material', 0.32), ('burst', 0.31), ('fire', 0.31), ('neighboring', 0.3), ('explosion', 0.29), ('caused', 0.29), ('warmer', 0.29), ('because', 0.28), ('anxiety', 0.28), ('furnace', 0.28), ('tear', 0.27), ('induced', 0.27), ('fail', 0.26), ('are', 0.26), ('collapse', 0.26), ('##thermal', 0.26), ('and', 0.25), ('great', 0.25), ('get', 0.24), ('spark', 0.23), ('lens', 0.2), ('cooler', 0.19), ('determined', 0.19), ('leak', 0.19), ('disease', 0.19), ('emotion', 0.16), ('cork', 0.14), ('cooling', 0.14), ('heating', 0.13), ('governed', 0.13), ('optical', 0.12), ('surrounding', 0.12), ('warming', 0.12), ('convection', 0.11), ('regulated', 0.11), ('problem', 0.1), ('cool', 0.09), ('violence', 0.09), ('breaker', 0.09), ('image', 0.09), ('photo', 0.05), ('strike', 0.05), ('.', 0.04), ('shattering', 0.04), ('snap', 0.03), ('wilson', 0.03), ('weather', 0.02), ('eye', 0.02), ('produce', 0.01), ('crime', 0.01), ('humid', 0.0), ('impact', 0.0), ('earthquake', 0.0)]```
```
**naver/splade-cocondenser-ensembledistil** (SoTA, ~10% more tokens + FLOPS = 1.85)
```python
number of actual dimensions: 126
SPLADE BOW rep:
[('stress', 2.25), ('glass', 2.23), ('thermal', 2.18), ('glasses', 1.65), ('pan', 1.62), ('heat', 1.56), ('stressed', 1.42), ('crack', 1.31), ('break', 1.12), ('cracked', 1.1), ('hot', 0.93), ('created', 0.9), ('factors', 0.81), ('broken', 0.73), ('caused', 0.71), ('too', 0.71), ('damage', 0.69), ('if', 0.68), ('hotter', 0.65), ('governed', 0.61), ('heating', 0.59), ('temperature', 0.59), ('adjacent', 0.59), ('cause', 0.58), ('effect', 0.57), ('fracture', 0.56), ('bradford', 0.55), ('strain', 0.53), ('hammer', 0.51), ('brian', 0.48), ('error', 0.47), ('windows', 0.45), ('will', 0.45), ('reaction', 0.42), ('create', 0.42), ('windshield', 0.41), ('heated', 0.41), ('factor', 0.4), ('cracking', 0.39), ('failure', 0.38), ('mechanical', 0.38), ('when', 0.38), ('formed', 0.38), ('bolt', 0.38), ('mechanism', 0.37), ('warm', 0.37), ('areas', 0.36), ('area', 0.36), ('energy', 0.34), ('disorder', 0.33), ('barry', 0.33), ('shock', 0.32), ('determined', 0.32), ('gage', 0.32), ('sash', 0.31), ('theory', 0.31), ('level', 0.31), ('resistant', 0.31), ('brake', 0.3), ('window', 0.3), ('crash', 0.3), ('hazard', 0.29), ('##ink', 0.27), ('ceramic', 0.27), ('storm', 0.25), ('problem', 0.25), ('issue', 0.24), ('impact', 0.24), ('fridge', 0.24), ('injury', 0.23), ('ross', 0.22), ('causes', 0.22), ('affect', 0.21), ('pressure', 0.21), ('fatigue', 0.21), ('leak', 0.21), ('eye', 0.2), ('frank', 0.2), ('cool', 0.2), ('might', 0.19), ('gravity', 0.18), ('ray', 0.18), ('static', 0.18), ('collapse', 0.18), ('physics', 0.18), ('wave', 0.18), ('reflection', 0.17), ('parker', 0.17), ('strike', 0.17), ('hottest', 0.17), ('burst', 0.16), ('chance', 0.16), ('burn', 0.14), ('rubbing', 0.14), ('interference', 0.14), ('bailey', 0.13), ('vibration', 0.12), ('gilbert', 0.12), ('produced', 0.12), ('rock', 0.12), ('warmer', 0.11), ('get', 0.11), ('drink', 0.11), ('fireplace', 0.11), ('ruin', 0.1), ('brittle', 0.1), ('fragment', 0.1), ('stumble', 0.09), ('formation', 0.09), ('shatter', 0.08), ('great', 0.08), ('friction', 0.08), ('flash', 0.07), ('cracks', 0.07), ('levels', 0.07), ('smash', 0.04), ('fail', 0.04), ('fra', 0.04), ('##glass', 0.03), ('variables', 0.03), ('because', 0.02), ('knock', 0.02), ('sun', 0.02), ('crush', 0.01), ('##e', 0.01), ('anger', 0.01)]
```
**naver/splade-v2-distil** (~100% more tokens + FLOPS = 3.82)
```python
number of actual dimensions: 234
SPLADE BOW rep:
[('glass', 2.55), ('stress', 2.39), ('thermal', 2.38), ('glasses', 1.95), ('stressed', 1.87), ('crack', 1.84), ('cool', 1.78), ('heat', 1.62), ('pan', 1.6), ('break', 1.53), ('adjacent', 1.44), ('hotter', 1.43), ('strain', 1.21), ('area', 1.16), ('adjoining', 1.14), ('heated', 1.11), ('window', 1.07), ('stresses', 1.04), ('hot', 1.03), ('created', 1.03), ('create', 1.03), ('cause', 1.02), ('factors', 1.02), ('cooler', 1.01), ('broken', 1.0), ('too', 0.99), ('fracture', 0.96), ('collapse', 0.96), ('cracking', 0.95), ('great', 0.93), ('happen', 0.93), ('windows', 0.89), ('broke', 0.87), ('##e', 0.87), ('pressure', 0.84), ('hottest', 0.84), ('breaking', 0.83), ('govern', 0.79), ('shatter', 0.76), ('level', 0.75), ('heating', 0.69), ('temperature', 0.69), ('cracked', 0.69), ('panel', 0.68), ('##glass', 0.68), ('ceramic', 0.67), ('sash', 0.66), ('warm', 0.66), ('areas', 0.64), ('creating', 0.63), ('will', 0.62), ('tension', 0.61), ('cracks', 0.61), ('optical', 0.6), ('mechanism', 0.58), ('kelly', 0.58), ('determined', 0.58), ('generate', 0.58), ('causes', 0.56), ('if', 0.56), ('factor', 0.56), ('the', 0.56), ('chemical', 0.55), ('governed', 0.55), ('crystal', 0.55), ('strike', 0.55), ('microsoft', 0.54), ('creates', 0.53), ('than', 0.53), ('relation', 0.53), ('glazed', 0.52), ('compression', 0.51), ('painting', 0.51), ('governing', 0.5), ('harden', 0.49), ('solar', 0.48), ('reflection', 0.48), ('ic', 0.46), ('split', 0.45), ('mirror', 0.44), ('damage', 0.43), ('ring', 0.42), ('formation', 0.42), ('wall', 0.41), ('burst', 0.4), ('radiant', 0.4), ('determine', 0.4), ('one', 0.4), ('plastic', 0.39), ('furnace', 0.39), ('difference', 0.39), ('melt', 0.39), ('get', 0.39), ('contract', 0.38), ('forces', 0.38), ('gets', 0.38), ('produce', 0.38), ('surrounding', 0.37), ('vibration', 0.37), ('tile', 0.37), ('fail', 0.36), ('warmer', 0.36), ('rock', 0.35), ('fault', 0.35), ('roof', 0.34), ('burned', 0.34), ('physics', 0.33), ('welding', 0.33), ('why', 0.33), ('a', 0.32), ('pop', 0.32), ('and', 0.31), ('fra', 0.3), ('stat', 0.3), ('withstand', 0.3), ('sunglasses', 0.3), ('material', 0.29), ('ice', 0.29), ('generated', 0.29), ('matter', 0.29), ('frame', 0.28), ('elements', 0.28), ('then', 0.28), ('.', 0.28), ('pont', 0.28), ('blow', 0.28), ('snap', 0.27), ('metal', 0.26), ('effect', 0.26), ('reaction', 0.26), ('related', 0.25), ('aluminium', 0.25), ('neighboring', 0.25), ('weight', 0.25), ('steel', 0.25), ('bulb', 0.25), ('tear', 0.25), ('coating', 0.25), ('plumbing', 0.25), ('co', 0.25), ('microwave', 0.24), ('formed', 0.24), ('pipe', 0.23), ('drink', 0.23), ('chemistry', 0.23), ('energy', 0.22), ('reflect', 0.22), ('dynamic', 0.22), ('leak', 0.22), ('is', 0.22), ('lens', 0.21), ('frost', 0.21), ('lenses', 0.21), ('produced', 0.21), ('induced', 0.2), ('arise', 0.2), ('plate', 0.2), ('equations', 0.19), ('affect', 0.19), ('tired', 0.19), ('mirrors', 0.18), ('thickness', 0.18), ('bending', 0.18), ('cabinet', 0.17), ('apart', 0.17), ('##thermal', 0.17), ('gas', 0.17), ('equation', 0.17), ('relationship', 0.17), ('composition', 0.17), ('engineering', 0.17), ('block', 0.16), ('breaks', 0.16), ('when', 0.16), ('definition', 0.16), ('collapsed', 0.16), ('generation', 0.16), (',', 0.16), ('philips', 0.16), ('later', 0.15), ('wood', 0.15), ('neighbouring', 0.15), ('structural', 0.14), ('regulate', 0.14), ('neighbors', 0.13), ('lighting', 0.13), ('happens', 0.13), ('more', 0.13), ('property', 0.13), ('cooling', 0.12), ('shattering', 0.12), ('melting', 0.12), ('how', 0.11), ('cloud', 0.11), ('barriers', 0.11), ('lam', 0.11), ('conditions', 0.11), ('rule', 0.1), ('insulation', 0.1), ('bathroom', 0.09), ('convection', 0.09), ('cavity', 0.09), ('source', 0.08), ('properties', 0.08), ('bend', 0.08), ('bottles', 0.08), ('ceramics', 0.07), ('temper', 0.07), ('tense', 0.07), ('keller', 0.07), ('breakdown', 0.07), ('concrete', 0.07), ('simon', 0.07), ('solids', 0.06), ('windshield', 0.05), ('eye', 0.05), ('sunlight', 0.05), ('brittle', 0.03), ('caused', 0.03), ('suns', 0.03), ('floor', 0.02), ('components', 0.02), ('photo', 0.02), ('change', 0.02), ('sun', 0.01), ('crystals', 0.01), ('problem', 0.01), ('##proof', 0.01), ('parameters', 0.01), ('gases', 0.0), ('prism', 0.0), ('doing', 0.0), ('lattice', 0.0), ('ground', 0.0)]
```
- *Note 1: This specific passage was used as an example for [ease of comparison](https://github.com/naver/splade/blob/main/inference_splade.ipynb)*
</details>
## How does it translate into Empirical metrics?
Our models are token sparse and yet effective. It translates to faster retrieval (User experience) and smaller index size ($). Mean retrieval time on the standard MS-MARCO small dev set and Scaled total FLOPS loss are the respective metrics are below.
This is why Google's SparseEmbed is interesting as they also achieve SPLADE quality retrieval effectiveness with much lower FLOPs. Compared to ColBERT, SPLADE and SparseEmbed match query and
document terms with a linear complexity as ColBERT’s late interaction i.e. all query-document term pairs takes a quadratic complexity. The Challenge with SparseEmbed is it uses a hyperparameter called **Top-k to restrict number of tokens used to learn contextual dense representations.** Say 64 and 256 tokens for query and passage encoding.
But it is unclear how well these hyperparameters are transferable to other domains or languages (where the notion of tokens changes a lot like our mother tongue Tamil which is Agglutinative in nature).
<img src="./Metrics.png" width=800/>
<details>
**Note: Why Anserini not PISA?** *Anserini is a production ready lucene based library. Common industry search deployments use Solr or elastic which are lucene based, hence the performance can be comparable. PISA latency is irrelevant for industry as it is a a research only system.*
The full [anserini evaluation log](https://huggingface.co/prithivida/Splade_PP_en_v1/blob/main/anserini_run.log) with encoding, indexing and querying details are here.
- **BEIR ZST OOD performance**: Will be added to the end of page.
**Our model is different in few more aspects**
- **Cocondenser Weights**: Unlike the best Official SPLADE++ or SparseEmbed we do NOT initialse weights from Luyu/co-condenser* models. Yet we achieve CoCondenser SPLADE level performance. More on this later.
- **Same size models:** Official SPLADE++, SparseEmbed and Ours all finetune on the same size based model. Size of `bert-base-uncased`.
</details>
## Roadmap and future directions for Industry Suitability.
- **Custom/Domain Finetuning**: OOD Zeroshot performance of SPLADE models is great but unimportant in the industry setting as we need the ability to finetune on custom datasets or domains. Finetuning SPLADE on a new dataset is not cheap and needs labelling of queries and passages.
So we will continue to see how we can enable economically finetuning our recipe on custom datasets without expensive labelling.
- **Multilingual SPLADE**: Training cost of SPLADE i.e (GPU budget) directly proportional to Vocab size of the base model, So Mulitlingual SPLADE either using mbert or XLMR can be expensive as they have
120K and 250K vocab as opposed to 30K as in bert-base-uncased. We will continue to research to see how best we can extend our recipe to the multilingual world.
## Usage
To enable a light weight inference solution without heavy **No Torch dependency** we will also release a library - **SPLADERunner**
Ofcourse if it doesnt matter you could always use these models Huggingface transformers library.
<h1 id="htu">How to use? </h1>
## With SPLADERunner Library
[SPLADERunner Library](https://github.com/PrithivirajDamodaran/SPLADERunner)
```python
pip install spladerunner
#One-time init
from spladerunner import Expander
# Default model is the document expander.
exapander = Expander()
#Sample Document expansion
sparse_rep = expander.expand(
["The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic energy continues to have an impact on history and science."])
```
## With HuggingFace
```python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained('prithivida/Splade_PP_en_v1')
model = AutoModelForMaskedLM.from_pretrained('prithivida/Splade_PP_en_v1')
model.to(device)
sentence = """The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic energy continues to have an impact on history and science."""
inputs = tokenizer(sentence, return_tensors='pt')
inputs = {key: val.to(device) for key, val in inputs.items()}
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
outputs = model(**inputs)
logits, attention_mask = outputs.logits, attention_mask
relu_log = torch.log(1 + torch.relu(logits))
weighted_log = relu_log * attention_mask.unsqueeze(-1)
max_val, _ = torch.max(weighted_log, dim=1)
vector = max_val.squeeze()
cols = vector.nonzero().squeeze().cpu().tolist()
print("number of actual dimensions: ", len(cols))
weights = vector[cols].cpu().tolist()
d = {k: v for k, v in zip(cols, weights)}
sorted_d = {k: v for k, v in sorted(d.items(), key=lambda item: item[1], reverse=True)}
bow_rep = []
for k, v in sorted_d.items():
bow_rep.append((reverse_voc[k], round(v,2)))
print("SPLADE BOW rep:\n", bow_rep)
```
## BEIR Zeroshot ODD performance:
T.B.D
## Training details:
T.B.D
## Acknowledgements
- Thanks to Nils Reimers the inputs.
- Thanks to authors of the Anserini library.
## Limitations and bias
All limitations and biases of the BERT model applies to finetuning effort.
## Citation
Please cite if you use our models or libraries. Citation info below.
T.B.D
|