File size: 4,764 Bytes
33f4bef 1a98edd 33f4bef 8b48c21 33f4bef d5b7386 423bf1e d5b7386 8b48c21 3e89010 d5b7386 33f4bef 31126f3 33f4bef 31126f3 33f4bef 8b48c21 b184bd5 8b48c21 b184bd5 8b48c21 b184bd5 8b48c21 e973df7 b184bd5 e973df7 e46b4ba e973df7 59f67a7 b184bd5 8b48c21 b184bd5 8b48c21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
language:
- ca
tags:
- "catalan"
- "text classification"
- "tecla"
- "CaText"
- "Catalan Textual Corpus"
datasets:
- "projecte-aina/tecla"
metrics:
- accuracy
model-index:
- name: roberta-base-ca-cased-tc
results:
- task:
type: text-classification
dataset:
name: TeCla
type: projecte-aina/tecla
metrics:
- name: Accuracy
type: accuracy
value: 0.740388810634613
widget:
- text: "Els Pets presenten el seu nou treball al Palau Sant Jordi."
- text: "Els barcelonins incrementen un 23% l’ús del cotxe des de l’inici de la pandèmia."
- text: "Retards a quatre línies de Rodalies per una avaria entre Sants i plaça de Catalunya."
- text: "Majors de 60 anys i sanitaris començaran a rebre la tercera dosi de la vacuna covid els propers dies."
- text: "Els cinemes Verdi estrenen Verdi Classics, un nou canal de televisió."
---
# Catalan BERTa (roberta-base-ca) finetuned for Text Classification.
## Table of Contents
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-uses-and-limitations)
- [How to Use](#how-to-use)
- [Training](#training)
- [Training Data](#training-data)
- [Training Procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Variable and Metrics](#variable-and-metrics)
- [Evaluation Results](#evaluation-results)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Funding](#funding)
- [Contributions](#contributions)
## Model description
The **roberta-base-ca-cased-tc** is a Text Classification (TC) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
## Intended Uses and Limitations
**roberta-base-ca-cased-tc** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases.
## How to Use
Here is how to use this model:
```python
from transformers import pipeline
from pprint import pprint
nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-cased-tc")
example = "Retards a quatre línies de Rodalies per una avaria entre Sants i plaça de Catalunya."
tc_results = nlp(example)
pprint(tc_results)
```
## Training
### Training data
We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation.
### Training Procedure
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
## Evaluation
### Variable and Metrics
This model was finetuned maximizing accuracy.
## Evaluation results
We evaluated the _roberta-base-ca-cased-tc_ on the TeCla test set against standard multilingual and monolingual baselines:
| Model | TeCla (accuracy) |
| ------------|:-------------|
| roberta-base-ca-cased-tc | **74.04** |
| mBERT | 70.56 |
| XLM-RoBERTa | 71.68 |
| WikiBERT-ca | 73.22 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
## Licensing Information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation Information
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
## Contributions
[N/A] |