mmarimon commited on
Commit
303e8fd
1 Parent(s): ad2da88

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -25
README.md CHANGED
@@ -55,30 +55,38 @@ widget:
55
  # Catalan BERTa (roberta-base-ca) finetuned for Textual Entailment.
56
 
57
  ## Table of Contents
58
- - [Model Description](#model-description)
59
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
60
- - [How to Use](#how-to-use)
 
 
 
 
61
  - [Training](#training)
62
- - [Training Data](#training-data)
63
- - [Training Procedure](#training-procedure)
64
  - [Evaluation](#evaluation)
65
- - [Variable and Metrics](#variable-and-metrics)
66
- - [Evaluation Results](#evaluation-results)
67
- - [Licensing Information](#licensing-information)
68
- - [Citation Information](#citation-information)
69
- - [Funding](#funding)
70
- - [Contributions](#contributions)
71
- - [Disclaimer](#disclaimer)
 
 
 
 
72
 
73
  ## Model description
74
 
75
  The **roberta-base-ca-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the roberta-base-camodel, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
76
 
77
- ## Intended Uses and Limitations
78
 
79
  **roberta-base-ca-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases.
80
 
81
- ## How to Use
82
 
83
  Here is how to use this model:
84
 
@@ -93,17 +101,20 @@ te_results = nlp(example)
93
  pprint(te_results)
94
  ```
95
 
 
 
 
96
  ## Training
97
 
98
  ### Training data
99
  We used the TE dataset in Catalan called [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation.
100
 
101
- ### Training Procedure
102
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
103
 
104
  ## Evaluation
105
 
106
- ### Variable and Metrics
107
 
108
  This model was finetuned maximizing accuracy.
109
 
@@ -119,11 +130,24 @@ We evaluated the roberta-base-ca-cased-te on the TE-ca test set against standard
119
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
120
 
121
 
122
- ## Licensing Information
123
 
 
 
 
 
 
 
 
 
 
 
124
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
125
 
126
- ## Citation Information
 
 
 
127
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
128
  ```bibtex
129
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -147,13 +171,6 @@ If you use any of these resources (datasets or models) in your work, please cite
147
  }
148
  ```
149
 
150
- ### Funding
151
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
152
-
153
- ## Contributions
154
-
155
- [N/A]
156
-
157
  ### Disclaimer
158
 
159
  <details>
 
55
  # Catalan BERTa (roberta-base-ca) finetuned for Textual Entailment.
56
 
57
  ## Table of Contents
58
+ <details>
59
+ <summary>Click to expand</summary>
60
+
61
+ - [Model description](#model-description)
62
+ - [Intended uses and limitations](#intended-use)
63
+ - [How to use](#how-to-use)
64
+ - [Limitations and bias](#limitations-and-bias)
65
  - [Training](#training)
66
+ - [Training data](#training-data)
67
+ - [Training procedure](#training-procedure)
68
  - [Evaluation](#evaluation)
69
+ - [Variable and metrics](#variable-and-metrics)
70
+ - [Evaluation results](#evaluation-results)
71
+ - [Additional information](#additional-information)
72
+ - [Author](#author)
73
+ - [Contact information](#contact-information)
74
+ - [Copyright](#copyright)
75
+ - [Licensing information](#licensing-information)
76
+ - [Funding](#funding)
77
+ - [Citing information](#citing-information)
78
+ - [Disclaimer](#disclaimer)
79
+ </details>
80
 
81
  ## Model description
82
 
83
  The **roberta-base-ca-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the roberta-base-camodel, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
84
 
85
+ ## Intended uses and limitations
86
 
87
  **roberta-base-ca-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases.
88
 
89
+ ## How to use
90
 
91
  Here is how to use this model:
92
 
 
101
  pprint(te_results)
102
  ```
103
 
104
+ ## Limitations and bias
105
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
106
+
107
  ## Training
108
 
109
  ### Training data
110
  We used the TE dataset in Catalan called [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation.
111
 
112
+ ### Training procedure
113
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
114
 
115
  ## Evaluation
116
 
117
+ ### Variable and metrics
118
 
119
  This model was finetuned maximizing accuracy.
120
 
 
130
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
131
 
132
 
133
+ ## Additional information
134
 
135
+ ### Author
136
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
137
+
138
+ ### Contact information
139
+ For further information, send an email to aina@bsc.es
140
+
141
+ ### Copyright
142
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
143
+
144
+ ### Licensing information
145
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
146
 
147
+ ### Funding
148
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
149
+
150
+ ### Citation Information
151
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
152
  ```bibtex
153
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
171
  }
172
  ```
173
 
 
 
 
 
 
 
 
174
  ### Disclaimer
175
 
176
  <details>