bsc-temu
commited on
Commit
•
c1ca154
1
Parent(s):
36f69ee
Update README.md
Browse files
README.md
CHANGED
@@ -24,8 +24,21 @@ datasets:
|
|
24 |
|
25 |
metrics:
|
26 |
|
27 |
-
- "
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
widget:
|
30 |
|
31 |
- text: "M'agrades. T'estimo."
|
@@ -39,3 +52,44 @@ widget:
|
|
39 |
---
|
40 |
|
41 |
# Catalan RoBERTa-base trained on Catalan Textual Corpus fine-tuned for Catalan Textual Entailment.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
metrics:
|
26 |
|
27 |
+
- "accuracy"
|
28 |
+
|
29 |
+
|
30 |
+
model-index:
|
31 |
+
- name: roberta-base-ca-cased-te
|
32 |
+
results:
|
33 |
+
- task:
|
34 |
+
type: text-classification # Required. Example: automatic-speech-recognition
|
35 |
+
dataset:
|
36 |
+
type: projecte-aina/teca
|
37 |
+
name: teca
|
38 |
+
metrics:
|
39 |
+
- type: accuracy
|
40 |
+
value: 0.7912139892578125
|
41 |
+
|
42 |
widget:
|
43 |
|
44 |
- text: "M'agrades. T'estimo."
|
|
|
52 |
---
|
53 |
|
54 |
# Catalan RoBERTa-base trained on Catalan Textual Corpus fine-tuned for Catalan Textual Entailment.
|
55 |
+
|
56 |
+
The **roberta-base-ca-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [BERTa](https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
|
57 |
+
|
58 |
+
## Datasets
|
59 |
+
We used the TE dataset in Catalan called [TECA](https://huggingface.co/datasets/projecte-aina/viquiquad) for training and evaluation.
|
60 |
+
|
61 |
+
## Evaluation and results
|
62 |
+
Below, the evaluation result on the TECA test set:
|
63 |
+
|
64 |
+
| Task | TECA (accuracy) |
|
65 |
+
| ------------|:----|
|
66 |
+
| BERTa | **79.12** |
|
67 |
+
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/berta).
|
68 |
+
|
69 |
+
## Citing
|
70 |
+
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
|
71 |
+
```bibtex
|
72 |
+
@inproceedings{armengol-estape-etal-2021-multilingual,
|
73 |
+
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
|
74 |
+
author = "Armengol-Estap{\'e}, Jordi and
|
75 |
+
Carrino, Casimiro Pio and
|
76 |
+
Rodriguez-Penagos, Carlos and
|
77 |
+
de Gibert Bonet, Ona and
|
78 |
+
Armentano-Oller, Carme and
|
79 |
+
Gonzalez-Agirre, Aitor and
|
80 |
+
Melero, Maite and
|
81 |
+
Villegas, Marta",
|
82 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
|
83 |
+
month = aug,
|
84 |
+
year = "2021",
|
85 |
+
address = "Online",
|
86 |
+
publisher = "Association for Computational Linguistics",
|
87 |
+
url = "https://aclanthology.org/2021.findings-acl.437",
|
88 |
+
doi = "10.18653/v1/2021.findings-acl.437",
|
89 |
+
pages = "4933--4946",
|
90 |
+
}
|
91 |
+
```
|
92 |
+
## Funding
|
93 |
+
TODO
|
94 |
+
## Disclaimer
|
95 |
+
TODO
|